Advertisement

Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise

  • Martin Tchoffo
  • Lionel Tenemeza Kenfack
  • Georges Collince Fouokeng
  • Lukong Cornelius Fai
Regular Article

Abstract.

We address the dynamics of decoherence and quantum correlations (entanglement and discord) in a model of three non-interacting qubits, initially prepared in a maximally entangled pure Greenberger-Horne-Zeilinger (GHZ) state and then subjected to classical environmental noise in common, different and mixed environments. The noise is modeled by randomizing the single-qubit transition amplitudes. We address both static and colored environmental noise. We find that the dynamics of quantum correlations are strongly affected by the type of system-environment interaction and the kind of the noise considered. On the one hand, our results clearly show that unlike what was found in the case of the two-qubit model analogous to the one here investigated, quantum correlations are not totally destroyed when the qubits are coupled to the noise in a common environment. On the other hand, the presence or absence of peculiar phenomena, such as entanglement, revivals and sudden death are observed. Furthermore, we show that the partial preservation of entanglement can be successfully detected by means of the suitable entanglement witness. Finally, in the case of static noise we find that the decoherence becomes stronger as the disorder of the environment increases whereas, for colored noise, it becomes stronger as the number of fluctuators increases.

References

  1. 1.
    M. Ramzan, Eur. Phys. J. D 67, 170 (2013)CrossRefADSGoogle Scholar
  2. 2.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010)Google Scholar
  3. 3.
    J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)CrossRefADSGoogle Scholar
  4. 4.
    C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2000)CrossRefADSGoogle Scholar
  5. 5.
    C. Xie, Y. Liu, H. Xing et al., Quantum Inf. Process. 14, 653 (2015)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)CrossRefADSGoogle Scholar
  7. 7.
    X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, K. Peng, Phys. Rev. Lett. 88, 04790416 (2002)Google Scholar
  8. 8.
    Th. Richter, W. Vogel, Phys. Rev. A 76, 053835 (2012)CrossRefADSGoogle Scholar
  9. 9.
    M. Murao, D. Jonathan, M.B. Plenio, V. Vedral, Phys. Rev. A 59, 156 (1999)CrossRefADSGoogle Scholar
  10. 10.
    C.Y. Hu, J.G. Rarity, Phys. Rev. B 83, 115303 (2011)CrossRefADSGoogle Scholar
  11. 11.
    T. Yu, J.H. Eberly, Science 323, 598 (2009)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    L. Aolita, F. de Melo, L. Davidovich, Rep. Prog. Phys. 78, 042001 (2015)CrossRefADSGoogle Scholar
  13. 13.
    R. Lo Franco, Quantum Inf. Process. 15, 2393 (2016)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)CrossRefADSGoogle Scholar
  15. 15.
    N. Metwally, A.S. Obada, arXiv:1506.01036 (2015)
  16. 16.
    C. Benedetti, F. Buscemi, P. Bordone, M.G.A. Paris, Int. J. Quant. Inf. 10, 1241005 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Benedetti, M.G.A. Paris, F. Buscemi, P. Bordone, Time-evolution of entanglement and quantum discord of bipartite systems subject to $1/f^{\alpha}$ noise, in Proceedings of the 22nd International Conference on Noise and Fluctuations (ICNF) 2013 Montpellier (IEEE, 2013) DOI:10.1109/ICNF.2013.6578952
  18. 18.
    D. Zhou, A. Lang, R. Joynt, Quantum Inf. Process. 9, 727 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. De, A. Lang, D. Zhou, R. Joynt, Phys. Rev. A 83, 042331 (2011)CrossRefADSGoogle Scholar
  20. 20.
    B. Leggio, R. Lo Franco, D.O. Soares-Pinto, P. Horodecki, G. Compagno, Phys. Rev. A 92, 032311 (2015)CrossRefADSGoogle Scholar
  21. 21.
    A. D’Arrigo, G. Benenti, R. Lo Franco, G. Falci, E. Paladino, Int. J. Quant. Inf. 12, 1461005 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J.-S. Xu, K. Sun, C.-F. Li et al., Nat. Commun. 4, 2851 (2013)ADSGoogle Scholar
  23. 23.
    A. Orieux, A. D’Arrigo, G. Ferranti, R.L. Franco et al., Sci. Rep. 5, 8575 (2015)CrossRefADSGoogle Scholar
  24. 24.
    F. Buscemi, P. Bordone, Phys. Rev. A 87, 042310 (2013)CrossRefADSGoogle Scholar
  25. 25.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)CrossRefADSGoogle Scholar
  26. 26.
    M.C. Tichy, F. Mintert, A. Buchleitner, J. Phys. B: At. Mol. Opt. Phys. 44, 192001 (2011)CrossRefADSGoogle Scholar
  27. 27.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    L. Gurvits, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing (AMC, New York, 2003) pp. 10--19Google Scholar
  29. 29.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Z.H. Chen, Z.H. Ma, J.L. Chen, S. Severini, Phys. Rev. A 85, 062320 (2012)CrossRefADSGoogle Scholar
  31. 31.
    Y.S. Weinstein, Phys. Rev. A 79, 012318 (2009)CrossRefADSGoogle Scholar
  32. 32.
    A. Acin, A. Andrianov, L. Costa, E. Jan, J.I. Latorre, R. Tarrach, Phys. Rev. Lett. 85, 1560 (2000)CrossRefADSGoogle Scholar
  33. 33.
    C.H. Bennett, D.P. DiVincenzo, C.A. Fuchs et al., Phys. Rev. A 59, 1070 (1999)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, B. Synak-Radtke, Phys. Rev. A 71, 062307 (2005)CrossRefADSGoogle Scholar
  35. 35.
    J. Niset, N.J. Cerf, Phys. Rev. A 74, 052103 (2006)CrossRefADSGoogle Scholar
  36. 36.
    J. Cui, H. Fan, J. Phys. A 43, 045305 (2010)MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Phys. Rev. Lett. 101, 200501 (2008)CrossRefADSGoogle Scholar
  38. 38.
    Z. Jian-Song, C. Ai-Xi, Quant. Phys. Lett. 69, 1 (2012)Google Scholar
  39. 39.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)CrossRefADSGoogle Scholar
  40. 40.
    S. Luo, Phys. Rev. A 77, 022301 (2008)CrossRefADSGoogle Scholar
  41. 41.
    J. Maziero, L.C. C’eleri, R.M. Serra, V. Vedral, Phys. Rev. A 80, 044102 (2009)MathSciNetCrossRefADSGoogle Scholar
  42. 42.
    T. Werlang, S. Souza, F.F. Fanchini, C.J. Villas Boas, Phys. Rev. A 80, 024103 (2009)CrossRefADSGoogle Scholar
  43. 43.
    L. Mazzola, J. Piilo, S. Maniscalco, Phys. Rev. Lett. 104, 200401 (2010)MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    J.-S. Xu, X.-Ye. Xu, C.-F. Li et al., Nat. Commun. 1, 7 (2010)ADSGoogle Scholar
  45. 45.
    M. Cianciaruso, T.R. Bromley, W. Roga, R. Lo Franco, G. Adesso, Sci. Rep. 5, 10177 (2015)CrossRefADSGoogle Scholar
  46. 46.
    B. Aaronson, R. Lo Franco, G. Adesso, Phys. Rev. A 88, 012120 (2013)CrossRefADSGoogle Scholar
  47. 47.
    M.B. Weissman, Rev. Mod. Phys. 60, 537 (1988)CrossRefADSGoogle Scholar
  48. 48.
    G. Falci, A. D’arrigo, A. Mastellone, E. Paladino, Phys. Rev. Lett. 94, 167002 (2005)CrossRefADSGoogle Scholar
  49. 49.
    B. Bellomo, G. Compagno, A. D’Arrigo, G. Falci, R. Lo Franco, E. Paladino, Phys. Rev. A 81, 062309 (2010)CrossRefADSGoogle Scholar
  50. 50.
    C. Benedetti, F. Buscemi, P. Bordone, M.G.A. Paris, Phys. Rev. A 87, 052328 (2013)CrossRefADSGoogle Scholar
  51. 51.
    G.L. Giorgi, B. Bellomo, F. Galve, R. Zambrini, Phys. Rev. Lett. 107, 190501 (2011)CrossRefADSGoogle Scholar
  52. 52.
    C. Sabin, G. Garcia-Alcaine, Eur. Phys. J. D 48, 435 (2008)MathSciNetCrossRefADSGoogle Scholar
  53. 53.
    G.N. Matthew, PhD Thesis, University of California, Santa Barbara (2010)Google Scholar
  54. 54.
    A. Acin, D. Bruss, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001)MathSciNetCrossRefADSGoogle Scholar
  55. 55.
    S. Bose, V. Vedral, Phys. Rev. A 61, 040101 (2000)CrossRefADSGoogle Scholar
  56. 56.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, Dordrecht, 1998)Google Scholar
  57. 57.
    C.H. Bennett, A. Grudka, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. A 83, 012312 (2011)CrossRefADSGoogle Scholar
  58. 58.
    L. Zhao, X. Hu, R. Yue et al., Quantum Inf. Process. 12, 2371 (2013)MathSciNetCrossRefADSGoogle Scholar
  59. 59.
    A. Beggi, F. Buscemi, P. Bordone, Quantum Inf. Process. 14, 573 (2015)MathSciNetCrossRefADSGoogle Scholar
  60. 60.
    P. Bordone, F. Buscemi, C. Benedetti, Fluctuat. Noise Lett. 11, 1242003 (2012)CrossRefGoogle Scholar
  61. 61.
    E. Paladino, A. DArrigo, A. Mastellone, G. Falci, New J. Phys. 13, 093037 (2011)CrossRefADSGoogle Scholar
  62. 62.
    J. Bergli, Y.M. Galperin, B.L. Altshuler, New J. Phys. 11, 025002 (2009)CrossRefADSGoogle Scholar
  63. 63.
    B. Abel, F. Marquardt, Phys. Rev. B 78, 201302 (2008)CrossRefADSGoogle Scholar
  64. 64.
    Z. Zhu-Qiang, W. An-Min, Q. Liang, Commun. Theor. Phys. 50, 1123 (2008)CrossRefADSGoogle Scholar
  65. 65.
    J. Ma, Z. Sun, X. Wang, F. Nori, Phys. Rev. A 85, 062323 (2012)CrossRefADSGoogle Scholar
  66. 66.
    Z.-X. Man, Y.-J. Xia, R. Lo Franco, Sci. Rep. 5, 13843 (2015)CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Martin Tchoffo
    • 1
  • Lionel Tenemeza Kenfack
    • 1
  • Georges Collince Fouokeng
    • 1
    • 2
  • Lukong Cornelius Fai
    • 1
  1. 1.Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of ScienceUniversity of DschangDschangCameroon
  2. 2.Laboratoire de Génie des Matériaux, Pôle Recherche-Innovation-Entrepreneuriat (PRIE)Institut Universitaire de la CôteDoualaCameroon

Personalised recommendations