Tsallis statistics in reliability analysis: Theory and methods

  • Fode Zhang
  • Yimin Shi
  • Hon Keung Tony Ng
  • Ruibing Wang
Regular Article

Abstract.

Tsallis statistics, which is based on a non-additive entropy characterized by an index q, is a very useful tool in physics and statistical mechanics. This paper presents an application of Tsallis statistics in reliability analysis. We first show that the q-gamma and incomplete q-gamma functions are q-generalized. Then, three commonly used statistical distributions in reliability analysis are introduced in Tsallis statistics, and the corresponding reliability characteristics including the reliability function, hazard function, cumulative hazard function and mean time to failure are investigated. In addition, we study the statistical inference based on censored reliability data. Specifically, we investigate the point and interval estimation of the model parameters of the q-exponential distribution based on the maximum likelihood method. Simulated and real-life datasets are used to illustrate the methodologies discussed in this paper. Finally, some concluding remarks are provided.

References

  1. 1.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer, New York, 2009)Google Scholar
  2. 2.
    T. Yamano, Physica A 305, 486 (2002)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    J.-F. Bercher, C. Vignat, Physica A 387, 5422 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    S. Martinez, F. Pennini, A. Plastino, Phys. Lett. A 278, 47 (2000)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A.S. Parvan, Eur. Phys. J. A 51, 108 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Liu, Q. Hu, Y. Cui, Q. Zhang, Neurocomputing 142, 393 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Furuichi, J. Math. Phys. 47, 023302 (2006)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Z. Darócy, Inform. Control 16, 36 (1970)CrossRefGoogle Scholar
  9. 9.
    S. Amari, Information Geometry and Its Applications (Springer, Japan, 2016)Google Scholar
  10. 10.
    S. Amari, A. Ohara, Entropy 13, 1170 (2011)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Ohara, Phys. Lett. A 370, 184 (2007)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Matsuzoe, Differ. Geom. Appl. 35, 323 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Loaiza, H.R. Quiceno, J. Math. Anal. Appl. 398, 466 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    K.P. Nelson, S. Umarov, Physica A 389, 2157 (2010)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Jauregui, C. Tsallis, Phys. Lett. A 375, 2085 (2011)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Huang, W.A. Yong, L. Hong, J. Math. Anal. Appl. 436, 501 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    N. Balakrishnan, R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications (Birkhäuser, Boston, 2000)Google Scholar
  18. 18.
    K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science Applications, 2nd edition (John Wiley & Sons, New Jersey, 2001)Google Scholar
  19. 19.
    E.T. Lee, J.W. Wang, Statistical Methods for Survival Data Analysis 3rd edition (John Wiley & Sons, New Jersey, 2003)Google Scholar
  20. 20.
    W. Nelson, Accelerated Testing: Statistical Models, Test Plans, and Data Analyses (John Wiley & Sons, New York, 1990)Google Scholar
  21. 21.
    W.Q. Meeker, L.A. Escobar, Statistical Methods for Reliability Data (John Wiley & Sons, New York, 1998)Google Scholar
  22. 22.
    V. Kumar, Physica A 462, 667 (2016)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A.M. Mathai, S.B. Provost, IEEE Trans. Reliab. 55, 237 (2006)CrossRefGoogle Scholar
  24. 24.
    X.P. Zhang, J.Z. Shang, X. Chen, C.H. Zhang, Y.S. Wang, IEEE Trans. Reliab. 63, 764 (2014)CrossRefGoogle Scholar
  25. 25.
    D. Han, H.K.T. Ng, Commun. Stat. Theory Methods 43, 2384 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Nadarajah, S. Kotz, Physica A 377, 465 (2007)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Picoli Jr., R.S. Mendes, L.C. Malacarne, Physica A 324, 678 (2003)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Ludescher, C. Tsallis, A. Bunde, EPL 95, 68002 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    W. Weibull, J. Appl. Mech. 18, 293 (1951)Google Scholar
  30. 30.
    S.J. Almalki, S. Nadarajah, Reliab. Eng. Syst. Saf. 124, 32 (2014)CrossRefGoogle Scholar
  31. 31.
    C.D. Lai, D.N.P. Murthy, M. Xie, WIREs Comput. Stat. 3, 282 (2011)CrossRefGoogle Scholar
  32. 32.
    C.F. Zhang, Y.M. Shi, M. Wu, J. Comput. Appl. Math. 297, 65 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    A.C. Cohen, Technometrics 5, 327 (1963)MathSciNetCrossRefGoogle Scholar
  34. 34.
    N. Balakrishnan, E. Cramer, The Art of Progressive Censoring: Applications to Reliability and Quality (Birkhäuser, Basel, 2004)Google Scholar
  35. 35.
    P.S. Chan, H.K.T. Ng, F. Su, Metrika 78, 747 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    S. Park, H.K.T. Ng, P.S. Chan, Stat. Probab. Lett. 97, 142 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    F. Zhang, Y. Shi, Physica A 446, 234 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    F. Zhang, Y. Shi, SpringerPlus 5, 1 (2016)CrossRefGoogle Scholar
  39. 39.
    K. Soetaert, rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations, R-package version 1.6 (2009)Google Scholar
  40. 40.
    B. Efron, The Jackknife, the Bootstrap and Other Re-sampling plans, in CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 38 (SIAM, Philadelphia, PA, 1982)Google Scholar
  41. 41.
    D. Kundu, A. Joarder, Comput. Stat. Data Anal. 50, 2509 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    N. Balakrishnan, R.A. Sandhu, Am. Stat. 49, 229 (1995)Google Scholar
  43. 43.
    J. Buckley, I. James, Biometrika 66, 429 (1979)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fode Zhang
    • 1
    • 2
  • Yimin Shi
    • 1
  • Hon Keung Tony Ng
    • 2
  • Ruibing Wang
    • 1
  1. 1.Department of Applied MathematicsNorthwestern Polytechnical UniversityShaanxiChina
  2. 2.Department of Statistical ScienceSouthern Methodist University DallasDallasUSA

Personalised recommendations