Skip to main content
Log in

Theoretical and experimental investigations of optical, structural and electronic properties of the lower-dimensional hybrid [NH3-(CH2)10-NH3]ZnCl4

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the current study, a combination between theoretical and experimental studies has been made for the hybrid perovskite [NH3-(CH2)10-NH3]ZnCl4. The density functional theory (DFT) was performed to investigate structural and electronic properties of the tilted compound. A local approximation (LDA) and semi-local approach (GGA) were employed. The results are obtained using, respectively, the local exchange correlation functional of Perdew-Wang 92 (PW92) and semi local functional of Perdew-Burke-Ernzerhof (PBE). The optimized cell parameters are in good agreement with the experimental results. Electronic properties have been studied through the calculation of band structures and density of state (DOS), while structural properties are investigated by geometry optimization of the cell. Fritz-Haber-Institute (FHI) pseudopotentials were employed to perform all calculations. The optical diffuse reflectance spectra was mesured and applied to deduce the refractive index (n), the extinction coefficient (k), the absorption coefficient (\(\alpha\)), the real and imaginary dielectric permittivity parts (\(\varepsilon_{r},\varepsilon_{i})\)) and the optical band gap energy Eg. The optical band gap energy value shows good consistent with that obtained from DFT calculations and reveals the insulating behavior of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Mitzi, K. Chondroudis, C.R. Kagan, IBM J. Res. Dev 45, 29 (2001)

    Article  Google Scholar 

  2. T. Sekine, T. Okuno, K. Awaga, Inorg. Chem. 37, 2129 (1998)

    Article  Google Scholar 

  3. M. Braun, W. Tuffentsammer, H. Wachtel, H.C. Wolf, Chem. Phys. Lett. 303, 157 (1999)

    Article  ADS  Google Scholar 

  4. D.B. Mitzi, J. Chem. Soc., Dalton Trans. 2001, 1 (2001) DOI:10.1039/B007070J

    Article  Google Scholar 

  5. D.B. Mitzi, Chem. Mater. 8, 791 (1996)

    Article  Google Scholar 

  6. I. Chaabane, F. Hlel, K. Guidara, J. Alloys Compd. 461, 495 (2008)

    Article  Google Scholar 

  7. O.R. Evans, W. Lin, Acc. Chem. Res. 35, 511 (2002)

    Article  Google Scholar 

  8. J.P. Zhang, X.M. Chen, Chem. Commun. 2006, 1689 (2006) DOI:10.1039/B516367F

    Article  Google Scholar 

  9. K. Elmebrouki, S. Tamsamani, M. Khechoubi, J. Asian. Sci. Res. 1, 216 (2011)

    Google Scholar 

  10. M.F. Mostafa, S.S. El-Khiyami, J. Solid State Chem. 209, 82 (2014)

    Article  ADS  Google Scholar 

  11. M.F. Mostafa, M.M. Abdelkader, S.S. Arafat, Z. Naturforsch. A 57, 897 (2002)

    Article  ADS  Google Scholar 

  12. K. Halvorson, R.D. Willett, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 44, 2071 (1988)

    Article  Google Scholar 

  13. J.K. Garland, K. Emerson, M.R. Pressprich, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 46, 1603 (1990)

    Article  Google Scholar 

  14. S. Skaarup, R.W. Berg, Solid State Chem. 26, 59 (1978)

    Article  ADS  Google Scholar 

  15. J.C. Crowley, H.W. Dodgen, R.D. Willett, J. Phys. Chem. 86, 4046 (1982)

    Article  Google Scholar 

  16. A.B. Corradi, A.M. Ferrari, G.C. Pellacani, A. Saccani, F. Sandrolini, P. Sgarabotto, Inorg. Chem. 38, 716 (1999)

    Article  Google Scholar 

  17. C. Courseille, N.B. Chanh, Th. Marias, A. Daoud, Y. Abid, M. Laguerre, Phys. Status Solidi A 143, 203 (1994)

    Article  ADS  Google Scholar 

  18. G.A. Mousdis, G.C. Papavassiliou, C.P. Raptopoulou, A. Terzis, J. Mater. Chem. 10, 515 (2000)

    Article  Google Scholar 

  19. R. Spengler, R. Zouari, H. Zimmerman, A.B. Salah, H. Burzlaff, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 54, 1628 (1998)

    Article  Google Scholar 

  20. M. Amami, R. Zouari, A.B. Salah, H. Burzlaff, Acta Crystallogr. Sect. E: Struct. Rep. Online 58, m357 (2002)

    Article  Google Scholar 

  21. W. Kohn, L. Sham, J. Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  22. N.V. Petrova, I.N. Yakovkin, Eur. Phys. J. B 86, 303 (2013)

    Article  ADS  Google Scholar 

  23. C.E. Ekuma, V.I. Anisimov, J. Moreno, M. Jarrell, Eur. Phys. J. B 87, 23 (2014)

    Article  ADS  Google Scholar 

  24. S. Naderizadeh, S.M. Elahi, M.R. Abolhassani, F. Kanjouri, N. Rahimi, J. Jalilian, Eur. Phys. J. B 85, 144 (2012)

    Article  ADS  Google Scholar 

  25. Sheetal Sharma, Ajay Singh Verma, Eur. Phys. J. B 87, 159 (2014)

    Article  ADS  Google Scholar 

  26. R. Khenata, B. Daoudi, M. Sahnoun, H. Baltache, M. Rrat, A.H. Reshak, B. Bouhafs, H. Abid, M. Driz, Eur. Phys. J. B 47, 63 (2005)

    Article  ADS  Google Scholar 

  27. P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593 (1931)

    Google Scholar 

  28. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, J. Mater. Chem. A 1, 5628 (2013)

    Article  Google Scholar 

  29. D.P. Gosain, T. Shimizu, M. Ohmura, M. Suzuki, T. Bando, S. Okano, J. Mater. Sci. 26, 3271 (1991)

    Article  ADS  Google Scholar 

  30. D.J. Gravesteijn, Appl. Opt. 27, 736 (1988)

    Article  ADS  Google Scholar 

  31. R.E. Hummel, Electronic Properties of Materials, 4th edition (Springer Science & Business Media, 2011)

  32. S. Kalyanaraman, P.M. Shajinshinu, S. Vijayalakshmi, Physica B 482, 38 (2016)

    Article  ADS  Google Scholar 

  33. S. Kalyanaraman, P.M. Shajinshinu, S. Vijayalakshmi, J. Phys. Chem. Solids 86, 108 (2015)

    Article  ADS  Google Scholar 

  34. X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, F. Bottin, P. Boulanger et al., Comput. Phys. Commun. 180, 2582 (2009)

    Article  ADS  Google Scholar 

  35. X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese et al., Comput. Mater. Sci. 25, 478 (2002)

    Article  Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  37. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  38. I. Borriello, G. Cantele, D. Ninno, Phys. Rev. B 77, 235214 (2008)

    Article  ADS  Google Scholar 

  39. J.M. Henriques, C.A. Barboza, E.L. Albuquerque, E.W.S. Caetano, V.N. Freire, J.A.P. da Costa, J. Phys. D 41, 065405 (2008)

    Article  ADS  Google Scholar 

  40. M.K.Y. Chan, G. Ceder, Phys. Rev. Lett. 105, 196403 (2010)

    Article  ADS  Google Scholar 

  41. R.W. Godby, M. Schlter, L.J. Sham, Phys. Rev. B 35, 4170 (1987)

    Article  ADS  Google Scholar 

  42. C.S. Wang, W.E. Pickett, Phys. Rev. Lett. 51, 597 (1983)

    Article  ADS  Google Scholar 

  43. V.V. Atuchin, I.B. Troitskaia, O.Y. Khyzhun, V.L. Bekenev, Y.M. Solonin, Int. J. Appl. Phys. Math. 1, 19 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belaaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Mrabet, R., Kassou, S., Tahiri, O. et al. Theoretical and experimental investigations of optical, structural and electronic properties of the lower-dimensional hybrid [NH3-(CH2)10-NH3]ZnCl4 . Eur. Phys. J. Plus 131, 369 (2016). https://doi.org/10.1140/epjp/i2016-16369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16369-x

Navigation