Theoretical and experimental investigations of optical, structural and electronic properties of the lower-dimensional hybrid [NH3-(CH2)10-NH3]ZnCl4

  • R. El Mrabet
  • S. Kassou
  • O. Tahiri
  • A. Belaaraj
  • P. Guionneau
Regular Article

Abstract.

In the current study, a combination between theoretical and experimental studies has been made for the hybrid perovskite [NH3-(CH2)10-NH3]ZnCl4. The density functional theory (DFT) was performed to investigate structural and electronic properties of the tilted compound. A local approximation (LDA) and semi-local approach (GGA) were employed. The results are obtained using, respectively, the local exchange correlation functional of Perdew-Wang 92 (PW92) and semi local functional of Perdew-Burke-Ernzerhof (PBE). The optimized cell parameters are in good agreement with the experimental results. Electronic properties have been studied through the calculation of band structures and density of state (DOS), while structural properties are investigated by geometry optimization of the cell. Fritz-Haber-Institute (FHI) pseudopotentials were employed to perform all calculations. The optical diffuse reflectance spectra was mesured and applied to deduce the refractive index (n), the extinction coefficient (k), the absorption coefficient (\(\alpha\)), the real and imaginary dielectric permittivity parts (\(\varepsilon_{r},\varepsilon_{i})\)) and the optical band gap energy Eg. The optical band gap energy value shows good consistent with that obtained from DFT calculations and reveals the insulating behavior of the material.

References

  1. 1.
    D.B. Mitzi, K. Chondroudis, C.R. Kagan, IBM J. Res. Dev 45, 29 (2001)CrossRefGoogle Scholar
  2. 2.
    T. Sekine, T. Okuno, K. Awaga, Inorg. Chem. 37, 2129 (1998)CrossRefGoogle Scholar
  3. 3.
    M. Braun, W. Tuffentsammer, H. Wachtel, H.C. Wolf, Chem. Phys. Lett. 303, 157 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    D.B. Mitzi, J. Chem. Soc., Dalton Trans. 2001, 1 (2001) DOI:10.1039/B007070J CrossRefGoogle Scholar
  5. 5.
    D.B. Mitzi, Chem. Mater. 8, 791 (1996)CrossRefGoogle Scholar
  6. 6.
    I. Chaabane, F. Hlel, K. Guidara, J. Alloys Compd. 461, 495 (2008)CrossRefGoogle Scholar
  7. 7.
    O.R. Evans, W. Lin, Acc. Chem. Res. 35, 511 (2002)CrossRefGoogle Scholar
  8. 8.
    J.P. Zhang, X.M. Chen, Chem. Commun. 2006, 1689 (2006) DOI:10.1039/B516367F CrossRefGoogle Scholar
  9. 9.
    K. Elmebrouki, S. Tamsamani, M. Khechoubi, J. Asian. Sci. Res. 1, 216 (2011)Google Scholar
  10. 10.
    M.F. Mostafa, S.S. El-Khiyami, J. Solid State Chem. 209, 82 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    M.F. Mostafa, M.M. Abdelkader, S.S. Arafat, Z. Naturforsch. A 57, 897 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    K. Halvorson, R.D. Willett, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 44, 2071 (1988)CrossRefGoogle Scholar
  13. 13.
    J.K. Garland, K. Emerson, M.R. Pressprich, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 46, 1603 (1990)CrossRefGoogle Scholar
  14. 14.
    S. Skaarup, R.W. Berg, Solid State Chem. 26, 59 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    J.C. Crowley, H.W. Dodgen, R.D. Willett, J. Phys. Chem. 86, 4046 (1982)CrossRefGoogle Scholar
  16. 16.
    A.B. Corradi, A.M. Ferrari, G.C. Pellacani, A. Saccani, F. Sandrolini, P. Sgarabotto, Inorg. Chem. 38, 716 (1999)CrossRefGoogle Scholar
  17. 17.
    C. Courseille, N.B. Chanh, Th. Marias, A. Daoud, Y. Abid, M. Laguerre, Phys. Status Solidi A 143, 203 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    G.A. Mousdis, G.C. Papavassiliou, C.P. Raptopoulou, A. Terzis, J. Mater. Chem. 10, 515 (2000)CrossRefGoogle Scholar
  19. 19.
    R. Spengler, R. Zouari, H. Zimmerman, A.B. Salah, H. Burzlaff, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 54, 1628 (1998)CrossRefGoogle Scholar
  20. 20.
    M. Amami, R. Zouari, A.B. Salah, H. Burzlaff, Acta Crystallogr. Sect. E: Struct. Rep. Online 58, m357 (2002)CrossRefGoogle Scholar
  21. 21.
    W. Kohn, L. Sham, J. Phys. Rev. 140, A1133 (1965)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    N.V. Petrova, I.N. Yakovkin, Eur. Phys. J. B 86, 303 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    C.E. Ekuma, V.I. Anisimov, J. Moreno, M. Jarrell, Eur. Phys. J. B 87, 23 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    S. Naderizadeh, S.M. Elahi, M.R. Abolhassani, F. Kanjouri, N. Rahimi, J. Jalilian, Eur. Phys. J. B 85, 144 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Sheetal Sharma, Ajay Singh Verma, Eur. Phys. J. B 87, 159 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    R. Khenata, B. Daoudi, M. Sahnoun, H. Baltache, M. Rrat, A.H. Reshak, B. Bouhafs, H. Abid, M. Driz, Eur. Phys. J. B 47, 63 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593 (1931)Google Scholar
  28. 28.
    T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, J. Mater. Chem. A 1, 5628 (2013)CrossRefGoogle Scholar
  29. 29.
    D.P. Gosain, T. Shimizu, M. Ohmura, M. Suzuki, T. Bando, S. Okano, J. Mater. Sci. 26, 3271 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    D.J. Gravesteijn, Appl. Opt. 27, 736 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    R.E. Hummel, Electronic Properties of Materials, 4th edition (Springer Science & Business Media, 2011)Google Scholar
  32. 32.
    S. Kalyanaraman, P.M. Shajinshinu, S. Vijayalakshmi, Physica B 482, 38 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    S. Kalyanaraman, P.M. Shajinshinu, S. Vijayalakshmi, J. Phys. Chem. Solids 86, 108 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, F. Bottin, P. Boulanger et al., Comput. Phys. Commun. 180, 2582 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese et al., Comput. Mater. Sci. 25, 478 (2002)CrossRefGoogle Scholar
  36. 36.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  38. 38.
    I. Borriello, G. Cantele, D. Ninno, Phys. Rev. B 77, 235214 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    J.M. Henriques, C.A. Barboza, E.L. Albuquerque, E.W.S. Caetano, V.N. Freire, J.A.P. da Costa, J. Phys. D 41, 065405 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    M.K.Y. Chan, G. Ceder, Phys. Rev. Lett. 105, 196403 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    R.W. Godby, M. Schlter, L.J. Sham, Phys. Rev. B 35, 4170 (1987)ADSCrossRefGoogle Scholar
  42. 42.
    C.S. Wang, W.E. Pickett, Phys. Rev. Lett. 51, 597 (1983)ADSCrossRefGoogle Scholar
  43. 43.
    V.V. Atuchin, I.B. Troitskaia, O.Y. Khyzhun, V.L. Bekenev, Y.M. Solonin, Int. J. Appl. Phys. Math. 1, 19 (2011)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • R. El Mrabet
    • 1
  • S. Kassou
    • 1
  • O. Tahiri
    • 1
  • A. Belaaraj
    • 1
  • P. Guionneau
    • 2
  1. 1.Laboratoire de Physique des Matériaux et Modélisation des Systèmes (LP2MS)Unité Associée au CNRST-URAC: 08, Faculté des Sciences, Université Moulay IsmailMeknèsMorocco
  2. 2.CNRSUniv. Bordeaux ICMCBPessacFrance

Personalised recommendations