Advertisement

Study of various technological parameters on the C-Vg and the G-Vg characteristics of MOS structures

Regular Article

Abstract.

This paper was devoted to study the effects of some technological parameters (gate, oxide and doping density N a on the electrical properties of MOS structures. The conductance and capacitance were determined from a proposed admittance model. Results showed a frequency dispersion of C-V g and G-V g curves in inversion regime. This modeling takes into account the influence of series and parallel resistances (R s, R p), thickness of oxide layer, the work function of gate electrode and the doping density (N a). The C-V g and G-V g characteristics have been simulated at high frequency (100 kHz-1 MHz).With increasing frequency, the inversion capacitance is decreased whereas the conductance is strongly increased. A degradation of their shapes is shown in the operating accumulation and depletion modes. The accumulation capacitance seems to be strong for titanium oxide (TiO2) and for the oxide thickness is very small. Interestingly, the change of metal gate causes C-V g shifting and variation of the values of the flat band and threshold voltages. In the inversion mode, the C - V g and G-V g decreases with the increase of the doping density (N a). There is a shift of the flat-band and threshold voltage (V fb,V th) when N a increase. Excellent agreement was observed between the calculated and the measured C-V g curves obtained at high frequency.

References

  1. 1.
    G.E. Moore, in Solid-State Circuits Conference, Digest of Technical Papers. ISSCC. 2003 IEEE International, Vol. 1 (IEEE, 2003) pp. 20--23, DOI:10.1109/ISSCC.2003.1234194
  2. 2.
    G.E. Moore, in Proceedings of the International Electron Devices Meeting (IEDM ’75), Vol. 21 (1975) pp. 11--13Google Scholar
  3. 3.
    A.I. Kingon, J.-P. Maria, S.K. Streiffer, Nature 406, 1032 (2000)CrossRefGoogle Scholar
  4. 4.
    C. Jianjun, C. Shuming, L. Bin, L. Biwei, L. Zheng, T. Zheqian, J. Semiconduct. 31, 074006 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    A. Godoy, J.A. López-Villanueva, J.A. Jiménez-Tejada, A. Palma, F. Gámiz, Solid-State Electron. 45, 391 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    F.M. d’Heurle, M.O. Aboelfotoh, F. Pesavento, C.S. Petersson, Appl. Surf. Sci. 53, 237 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Hauser, K. Ahmed, AIP Conf. Proc. 235, 449 (1998)Google Scholar
  8. 8.
    A. Tataroğlu, S. Altindal, M.M. Bülbül, Microelectron. Eng. 81, 140 (2005)CrossRefGoogle Scholar
  9. 9.
    M.M. Bülbül, S. Zeyrek, Microelectron. Eng. 83, 2522 (2006)CrossRefGoogle Scholar
  10. 10.
    P. Chattopadhyay, B. RayChaudhuri, Solid State Electron. 36, 605 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    V. Mikhaelashvili, Y. Betzer, I. Prudnikov, M. Orenstein, D. Ritter, G. Eisenstein, J. Appl. Phys. 84, 6747 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    V. Misra, G.P. Heuss, H. Zhong, Appl. Phys. Lett. 78, 4166 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    J. Lee, Y.-S. Suh, H. Lazar, R. Jha, J. Gurganus, Y. Lin, V. Misra, in Technical Digest - International Electron Devices Meeting (IEEE International, 2003) pp. 13.5.1--13.5.4Google Scholar
  14. 14.
    H. Kim, P.C. McIntyre, C.O. Chui, K.C. Saraswat, S. Stemmer, J. Appl. Phys. 96, 3468 (2004)ADSGoogle Scholar
  15. 15.
    S. Abermann, J.K. Efavi, G. Sjoblom, M.C. Lemme, J. Olsson, E. Bertagnolli, Microelectron. Eng. 84, 1635 (2007)CrossRefGoogle Scholar
  16. 16.
    E. Atanassova, A. Paskaleva, N. Novkovski, M. Georgieva, J. Appl. Phys. 97, 094104 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    E. Atanassova, D. Spassov, A. Paskaleva, Microelectron. Reliab. 47, 2088 (2007)CrossRefGoogle Scholar
  18. 18.
    O. Rejaiba, M. Ben Amar, A. Matoussi, Eur. Phys. J. Plus 130, 80 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Mathieu, Physique de semi-conducteurs et des composantes électroniques (Masson S.A., Paris, 1998)Google Scholar
  20. 20.
    E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Willey Interscience Publication, USA, 1982)Google Scholar
  21. 21.
    A. Dimoulas, G. Mavrou, G. Vellianitis, E. Evangelou, N. Boukos, M. Houssa, M. Caymax, Appl. Phys. Lett. 86, 032908 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    P. Batude, X. Garros, L. Clavelier, C. Le Royer, J.M. Hartmann, V. Loup, P. Besson, L. Vandroux, Y. Campidelli, S. Deleonibus, F. Boulanger, J. Appl. Phys. 102, 034514 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    E.H. Nicollian, A. Goetzberger, Appl. Phys. Lett. 7, 216 (1965)ADSCrossRefGoogle Scholar
  24. 24.
    G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    M. Maitri Mishra, G. Pradhan, F. Ashraf Ali, G. Bose, in Intelligent Computing, Communication and Devices, Proceedings of ICCD., Vol. 1 (2014) pp. 499--507Google Scholar
  26. 26.
    H. Wong, H. Iwai, Microelectron. Eng. 83, 1867 (2006)CrossRefGoogle Scholar
  27. 27.
    I.-S. Park, T. Lee, H. Ko, J. Ahn, J. Korean. Phys. Soc. 49, 760 (2006)Google Scholar
  28. 28.
    S.S. Ullah, M. Robinson, J. Hoey, M.S. Driver, A. Caruso, D.L. Schulz, Semicond. Sci. Technol. 27, 065012 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    P.V. Gray, D.M. Brown, Appl. Phys. Lett. 13, 247 (1968)ADSCrossRefGoogle Scholar
  30. 30.
    H. Watanabe, IEEE Trans. Electron Dev. 52, 2265 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    P. Bouillon, T. Skotnicki, IEEE Electron. Dev. Lett. 19, 19 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    G. Yaron, D. Frohman-Bentchkowsky, Solid State Electron. 23, 433 (1980)ADSCrossRefGoogle Scholar
  33. 33.
    P. Bouillon, R. Gwoziecki, Th. Skotnicki, Member, IEEE, J. Alieu, P. Gentil, IEEE Trans. Electron. Dev. 47, 871 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    S.M. Sze, Physics of Semiconductors (Wiley Interscience, 1969)Google Scholar
  35. 35.
    B.E. Deal, E.H. Snow, C.A. Mead, J. Phys. Chem. Solids. 27, 1873 (1966)ADSCrossRefGoogle Scholar
  36. 36.
    A.S. Grove, B.E. Deal, E.H. Snow, C.T. Sah, Solid-State Electron. 8, 145 (1965)ADSCrossRefGoogle Scholar
  37. 37.
    E.H. Nicollian, J.R. Brews, Small-signal steady-state capacitance methods, in Mos (metal oxide semiconductor) physics and technology, Wiley Classics Library (John Wiley & Sons, Hoboken, N.J., 2003) pp. 334--336Google Scholar
  38. 38.
    V. Midili, Realization of a capacitance-voltage measurement system for semiconductor characterization, Thesis, Aalto University School of Electrical Engineering Degree Programme of Micro and Nanotechnology (2012)Google Scholar
  39. 39.
    G. Baccarani, S. Solmi, G. Soncini, Alta Frequenza 16, 113 (1972)Google Scholar
  40. 40.
    D.C. Wheeler, Dissertation submitted to the Graduate School of the University of Notre Dame, High-k-inas metal-oxide-semiconductor capacitors formed by atomic-layer deposition (India, 2009)Google Scholar
  41. 41.
    A. Paula, B. Ziliotto, Marcello Bellodi, VII Microelectronics Student Forum, SFORUM (2007) http://www.lbd.dcc.ufmg.br/colecoes/sforum/2008/0054.pdf
  42. 42.
    M. Shur, Surface charge in metal oxide semiconductor capacitor, in Physics of Semi-conductor devices, edited by Nick Holonyak Jr. (Prentice Hall New Jersey, Upper Saddle River, 1990) pp. 332--343Google Scholar
  43. 43.
    C. Chakraborty, J. Adv. Dielectr. 4, 1450023 (2014)CrossRefGoogle Scholar
  44. 44.
    H. Chakraborty, D. Misra, Int. J. Sci. Res. Publ. 3, 1 (2013)Google Scholar
  45. 45.
    J.A. Luna-Lopez, M. Aceves-Mijares, O. Malik, Soc. Mex. Ciencia Superf. Vacío. 17, 1 (2004)Google Scholar
  46. 46.
    P. Fernández-Martínez, F.R. Palomo, S. Hidalgo, C. Fleta, F. Campabadal, D. Flores, Nucl. Instrum. Methods Phys. Res. A 5, 108 (2013)Google Scholar
  47. 47.
    E. Atanassova, D. Spassov, A. Paskaleva, Microelectron. Eng. 83, 1918 (2006)CrossRefGoogle Scholar
  48. 48.
    D. Spassov, E. Atanassova, D. Virovska, Appl. Phys. A 82, 55 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Omar Rejaiba
    • 1
  • Alejandro F. Braña
    • 2
  • Adel Matoussi
    • 1
  1. 1.Laboratory of Composite Ceramic and Polymer Materials (LaMaCoP)Sfax Faculty of ScienceSfaxTunisia
  2. 2.Grupo de Electronica y Semiconductores, Departamento de Fısica AplicadaUniversidad Autonoma de MadridMadridSpain

Personalised recommendations