Slow viscous stream over a non-Newtonian fluid sphere in an axisymmetric deformed spherical vessel

  • B. R. Jaiswal
Regular Article


The creeping motion of a non-Newtonian (Reiner-Rivlin) liquid sphere at the instant it passes the center of an approximate spherical container is discussed. The flow in the spheroidal container is governed by the Stokes equation, while for the flow inside the Reiner-Rivlin liquid sphere, the expression for the stream function is obtained by expressing it in the power series of a parameter S , characterizing the cross-viscosity. Both the flow fields are then determined explicitly by matching the boundary conditions at the interface of Newtonian fluid and non-Newtonian fluid, and also the condition of imperviousness and no-slip on the outer surface. As an application, we have considered an oblate spheroidal container. The drag and wall effects on the liquid spherical body are evaluated. Their variations with regard to the separation parameter ℓ , viscosity ratio \( \lambda\), cross-viscosity S, and deformation parameter \( \varepsilon\) are studied and demonstrated graphically. Several renowned cases are derived from the present analysis. It is observed that the drag not only varies with \( \varepsilon\), but as ℓ increases, the rate of change in behavior of drag force also increases. The influences of these parameters on the wall effects has also been studied and presented in a table.


  1. 1.
    G.G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, in Transactions of the Cambridge Philosophical Society, Vol. 9, no. 2 (1851) pp. 8--06Google Scholar
  2. 2.
    H. Ramkissoon, J. Appl. Math. Phys. 37, 859 (1986)CrossRefGoogle Scholar
  3. 3.
    H. Ramkissoon, Z. Angew. Math. Mech. 78, 61 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Reiner, Amer. J. Math. 67, 350 (1945)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R.S. Rivlin, Nature 160, 611 (1947)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    B.R. Jaiswal, B.R. Gupta, Transp. Porous Media 107, 907 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    B.R. Jaiswal, B.R. Gupta, Meccanica (2016) DOI:10.1007/s11012-016-0385-3
  8. 8.
    H. Ramkissoon S.R. Majumadar, J. Appl. Math. Phys. 68, 155 (1988)Google Scholar
  9. 9.
    H. Ramkissoon, J. Maths. Sci. 10, 63 (1999)MathSciNetGoogle Scholar
  10. 10.
    B.R. Jaiswal, B.R. Gupta, Int. J. Appl. Math. Mech. 10, 90 (2014)Google Scholar
  11. 11.
    T.K.V. Iyengar, D. Srinivasacharya, Int. J. Eng. Sci. 31, 115 (1993)CrossRefGoogle Scholar
  12. 12.
    B.R. Jaiswal, B.R. Gupta, Int. J. Fluid. Mech. Res. 42, 170 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Palaniappan, Z. Angew. Math. Phys. 45, 832 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    C.W. Oseen, Newer methods and results in hydrodynamics (Akademische Verlagsgesellschaft, Leipzig, 1927)Google Scholar
  15. 15.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Clifs, NJ, 1965)Google Scholar
  16. 16.
    S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Butterworth-Heinemann, Boston, MA, USA, 1991)Google Scholar
  17. 17.
    R.B. Jones, Theoretical methods for micro scale viscous flows (Transworld Research Network, Kerla, India, 2009) chapt. 4, pp. 61--104Google Scholar
  18. 18.
    E. Cunningham, Proc. R. Soc. London Ser. A 83, 357 (1910)ADSCrossRefGoogle Scholar
  19. 19.
    W.E. Williams, Philos. Mag. 29, 526 (1915)CrossRefGoogle Scholar
  20. 20.
    W.L. Haberman, R.M. Sayre, Wall effects for rigid and fluid spheres in slow motion with a moving liquid: David Taylor model, Technical Report Basin Report No. 1143 (Washington, DC, 1958)Google Scholar
  21. 21.
    H. Ramkissoon, K. Rahaman, Acta Mech. 149, 239 (2001)CrossRefGoogle Scholar
  22. 22.
    H. Ramkissoon, K. Rahaman, Int. J. Eng. Sci. 41, 283 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    H. Ramkissoon, K. Rahaman, Z. Angew. Math. Mech. 83, 773 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    C. Maul, S. Kim, Phys. Fluids 6, 2221 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    C. Maul, S. Kim, J. Eng. Math. 30, 119 (1996)MathSciNetCrossRefGoogle Scholar
  26. 26.
    H.J. Keh, J. Chou, Chem. Eng. Sci. 59, 407 (2004)CrossRefGoogle Scholar
  27. 27.
    H.J. Keh, Y.S. Lu, J. Fluids Struct. 20, 735 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    D. Srinivasacharya, C. R. Mec. 333, 612 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    E.I. Saad, Can. J. Phys. 86, 1039 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    E.I. Saad, Can. J. Phys. 88, 689 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    D. Srinivasacharya, M.K. Prasad, Adv. Theor. Appl. Mech. 5, 247 (2012)Google Scholar
  32. 32.
    D. Srinivasacharya, M.K. Prasad, Acta Mech. Sin. 28, 653 (2012)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    D. Srinivasacharya, M.K. Prasad, J. Porous Media 15, 1105 (2012)CrossRefGoogle Scholar
  34. 34.
    D. Srinivasacharya, M.K. Prasad, Eur. J. Mech. B/Fluids 36, 104 (2012)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    D. Srinivasacharya, M.K. Prasad, Arch. Mech. 65, 485 (2013)Google Scholar
  36. 36.
    B.R. Jaiswal, B.R. Gupta, Appl. Comput. Mech. 8, 157 (2014)Google Scholar
  37. 37.
    H. Ramkissoon, Z. Angew. Mech. Math. 69, 259 (1989)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsAKS University, Sher GanjSatna (M.P.)India

Personalised recommendations