Advertisement

Electron acceleration based on a laser pulse propagating through a plasma in the simultaneous presence of a helical wiggler and an obliquely applied external magnetic field

  • M. A. Gashti
  • S. Jafari
Regular Article

Abstract.

Electron acceleration based on a laser pulse propagating through plasma channel has been studied in the simultaneous presence of a helical magnetic wiggler and an obliquely applied external magnetic field. A numerical study of electron energy and electron trajectory has been made using the fourth-order Runge-kutta method. Numerical results indicate that electron energy increases with decreasing \( \theta\) -angle of the obliquely external magnetic field. Besides, it increases with increasing the amplitude of the obliquely magnetic field. It is also found that the electron attains a higher energy at shorter distances for higher amplitude of the wiggler field \( \Omega_{w}\) . Therefore, employing a magnetic wiggler field is very beneficial for electron acceleration in short distances. Further new results reveal that in the absence of the wiggler field \( (\Omega_{w}=0)\) , the electron energy increases with increasing the laser intensity, whereas in the presence of the wiggler field \( (\Omega_{w}\neq0)\) , the electron energy increases with decreasing the laser intensity. As a result, employing a wiggler magnetic field in the laser-based electron accelerators can be worthwhile in the design of table top accelerators and it can enhance the electron energy at lower laser intensities.

References

  1. 1.
    D.N. Gupta, Chang-Mo Ryu, Phy. Plasmas 12, 053103 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    D.N. Gupta, K. Gopal, I.H. Nam, V.V. Kulagin, H. Suk, Laser Part. Beams 32, 449 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    W. Yu, Z.Y. Chen, M.Y. Yu, L.J. Qian, P.X. Lu, R.X. Li, K. Koyama, Phys. Rev. E 66, 036406 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    D.N. Gupta, H. Suk, Phys. Plasmas 13, 013105 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    K.P. Singh, V.K. Tripathi, Phys. Plasmas 2, 743 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    G. Malka, E. Lefebvre, J.L. Miquel, Phys. Rev. Lett. 78, 3314 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    K.P. Singh, Phys. Plasmas 11, 3992 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    E. Esarey, P. Sprangle, J. Krall, Phys. Rev. E 52, 5443 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    L.M. Gorbunov, V.I. Kirsanov, Zh. Eksp. Teor. Fiz. 93, 509 (1987)ADSGoogle Scholar
  11. 11.
    P. Jha, A. Saroch, R.K. Mishra, Laser Part. Beams 31, 583 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    G.D. Tsakiris, C. Gahn, V.K. Tripathi, Phys. Plasmas 7, 3017 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    P. Sprangle, E. Esarey, J. Krall, G. Joyce, Phys. Rev. Lett. 69, 2200 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    T.M. Antonsen jr., P. Mora, Phys. Rev. Lett. 69, 2204 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    A. Ting, E. Esarey, P. Sprangle, Phys. Fluids B 2, 1390 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    S. Jafari, Laser Phys. Lett. 12, 075002 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    N. Kumar, V.K. Tripathi, Europhys. Lett. 75, 260 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Yazdani, R. Sadighi-Bonabi, H. Afarideh, J. Yazdanpanah, H. Hora, Laser Part. Beams 32, 509 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    C.D. Decker, W.B. Mori, K.-C. Tzeng, T.C. Katsouleas, IEEE Trans. Plasma Sci. 24, 379 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, IEEE Trans. Plasma Sci. 24, 289 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    C. Gahn, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thivolf, D. Habs, K.J. Witte, Phys. Rev. Lett. 83, 4772 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    H. Liu, X.T. He, S.G. Chen, Phys. Rev. E 69, 066409 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    A. Sharma, V.K. Tripathi, Phys. Plasmas 16, 043103 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    E. Esarey, P. Sprangle, J. Krall, A. Ting, IEEE Trans. Plasma Sci. 24, 252 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    A. Modena, Z. Najmudin, A.E. Dangor, Nature (London) 337, 606 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    K.P. Singh, L. Bhasin, V.L. Gupta, V.K. Tripathi, Phys. Plasmas 7, 1493 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    M. Asri, A. Ahmadian, Appl. Phys. Lett. 35, 5539 (2012)Google Scholar
  28. 28.
    A. Ting, E. Esarey, P. Sprangle, Phys. Fluids B 2, 1390 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    D. Umstadter, Phys. Plasmas 8, 1774 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    T. Katsouleas, J.M. Dawson, Phys. Rev. Lett. 51, 392 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GuilanRashtIran

Personalised recommendations