Skip to main content
Log in

Electron acceleration based on a laser pulse propagating through a plasma in the simultaneous presence of a helical wiggler and an obliquely applied external magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Electron acceleration based on a laser pulse propagating through plasma channel has been studied in the simultaneous presence of a helical magnetic wiggler and an obliquely applied external magnetic field. A numerical study of electron energy and electron trajectory has been made using the fourth-order Runge-kutta method. Numerical results indicate that electron energy increases with decreasing \( \theta\) -angle of the obliquely external magnetic field. Besides, it increases with increasing the amplitude of the obliquely magnetic field. It is also found that the electron attains a higher energy at shorter distances for higher amplitude of the wiggler field \( \Omega_{w}\) . Therefore, employing a magnetic wiggler field is very beneficial for electron acceleration in short distances. Further new results reveal that in the absence of the wiggler field \( (\Omega_{w}=0)\) , the electron energy increases with increasing the laser intensity, whereas in the presence of the wiggler field \( (\Omega_{w}\neq0)\) , the electron energy increases with decreasing the laser intensity. As a result, employing a wiggler magnetic field in the laser-based electron accelerators can be worthwhile in the design of table top accelerators and it can enhance the electron energy at lower laser intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.N. Gupta, Chang-Mo Ryu, Phy. Plasmas 12, 053103 (2005)

    Article  ADS  Google Scholar 

  2. D.N. Gupta, K. Gopal, I.H. Nam, V.V. Kulagin, H. Suk, Laser Part. Beams 32, 449 (2014)

    Article  ADS  Google Scholar 

  3. W. Yu, Z.Y. Chen, M.Y. Yu, L.J. Qian, P.X. Lu, R.X. Li, K. Koyama, Phys. Rev. E 66, 036406 (2002)

    Article  ADS  Google Scholar 

  4. D.N. Gupta, H. Suk, Phys. Plasmas 13, 013105 (2006)

    Article  ADS  Google Scholar 

  5. K.P. Singh, V.K. Tripathi, Phys. Plasmas 2, 743 (2004)

    Article  ADS  Google Scholar 

  6. G. Malka, E. Lefebvre, J.L. Miquel, Phys. Rev. Lett. 78, 3314 (1997)

    Article  ADS  Google Scholar 

  7. K.P. Singh, Phys. Plasmas 11, 3992 (2004)

    Article  ADS  Google Scholar 

  8. E. Esarey, P. Sprangle, J. Krall, Phys. Rev. E 52, 5443 (1995)

    Article  ADS  Google Scholar 

  9. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  10. L.M. Gorbunov, V.I. Kirsanov, Zh. Eksp. Teor. Fiz. 93, 509 (1987)

    ADS  Google Scholar 

  11. P. Jha, A. Saroch, R.K. Mishra, Laser Part. Beams 31, 583 (2013)

    Article  ADS  Google Scholar 

  12. G.D. Tsakiris, C. Gahn, V.K. Tripathi, Phys. Plasmas 7, 3017 (2000)

    Article  ADS  Google Scholar 

  13. P. Sprangle, E. Esarey, J. Krall, G. Joyce, Phys. Rev. Lett. 69, 2200 (1992)

    Article  ADS  Google Scholar 

  14. T.M. Antonsen jr., P. Mora, Phys. Rev. Lett. 69, 2204 (1992)

    Article  ADS  Google Scholar 

  15. A. Ting, E. Esarey, P. Sprangle, Phys. Fluids B 2, 1390 (1990)

    Article  ADS  Google Scholar 

  16. S. Jafari, Laser Phys. Lett. 12, 075002 (2015)

    Article  ADS  Google Scholar 

  17. N. Kumar, V.K. Tripathi, Europhys. Lett. 75, 260 (2006)

    Article  ADS  Google Scholar 

  18. Yazdani, R. Sadighi-Bonabi, H. Afarideh, J. Yazdanpanah, H. Hora, Laser Part. Beams 32, 509 (2014)

    Article  ADS  Google Scholar 

  19. C.D. Decker, W.B. Mori, K.-C. Tzeng, T.C. Katsouleas, IEEE Trans. Plasma Sci. 24, 379 (1996)

    Article  ADS  Google Scholar 

  20. A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, IEEE Trans. Plasma Sci. 24, 289 (1996)

    Article  ADS  Google Scholar 

  21. C. Gahn, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thivolf, D. Habs, K.J. Witte, Phys. Rev. Lett. 83, 4772 (1999)

    Article  ADS  Google Scholar 

  22. H. Liu, X.T. He, S.G. Chen, Phys. Rev. E 69, 066409 (2004)

    Article  ADS  Google Scholar 

  23. A. Sharma, V.K. Tripathi, Phys. Plasmas 16, 043103 (2009)

    Article  ADS  Google Scholar 

  24. E. Esarey, P. Sprangle, J. Krall, A. Ting, IEEE Trans. Plasma Sci. 24, 252 (1996)

    Article  ADS  Google Scholar 

  25. A. Modena, Z. Najmudin, A.E. Dangor, Nature (London) 337, 606 (1995)

    Article  ADS  Google Scholar 

  26. K.P. Singh, L. Bhasin, V.L. Gupta, V.K. Tripathi, Phys. Plasmas 7, 1493 (2003)

    Article  ADS  Google Scholar 

  27. M. Asri, A. Ahmadian, Appl. Phys. Lett. 35, 5539 (2012)

    Google Scholar 

  28. A. Ting, E. Esarey, P. Sprangle, Phys. Fluids B 2, 1390 (1990)

    Article  ADS  Google Scholar 

  29. D. Umstadter, Phys. Plasmas 8, 1774 (2001)

    Article  ADS  Google Scholar 

  30. T. Katsouleas, J.M. Dawson, Phys. Rev. Lett. 51, 392 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gashti, M.A., Jafari, S. Electron acceleration based on a laser pulse propagating through a plasma in the simultaneous presence of a helical wiggler and an obliquely applied external magnetic field. Eur. Phys. J. Plus 131, 210 (2016). https://doi.org/10.1140/epjp/i2016-16210-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16210-8

Navigation