An improved iterative technique for solving nonlinear doubly singular two-point boundary value problems

Regular Article

Abstract.

This paper presents a new iterative technique for solving nonlinear singular two-point boundary value problems with Neumann and Robin boundary conditions. The method is based on the homotopy perturbation method and the integral equation formalism in which a recursive scheme is established for the components of the approximate series solution. This method does not involve solution of a sequence of nonlinear algebraic or transcendental equations for the unknown coefficients as in some other iterative techniques developed for singular boundary value problems. The convergence result for the proposed method is established in the paper. The method is illustrated by four numerical examples, two of which have physical significance: The first problem is an application of the reaction-diffusion process in a porous spherical catalyst and the second problem arises in the study of steady-state oxygen-diffusion in a spherical cell with Michaelis-Menten uptake kinetics.

References

  1. 1.
    L.E. Bobisud, Appl. Anal. 35, 43 (1990)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R.K. Pandey, Nonlinear Anal. Theory Methods Appl. 27, 1 (1996)CrossRefGoogle Scholar
  3. 3.
    R.K. Pandey, J. Differ. Equ. 127, 110 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    R.K. Pandey, J. Math. Anal. Appl. 208, 388 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R.K. Pandey, A.K. Verma, Nonlinear Anal.: Real World Appl. 9, 40 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    R.K. Pandey, Amit K. Verma, Nonlinear Anal.: Theory, Methods Appl. 71, 3477 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    D.L.S. McElwain, J. Theoret. Biol. 71, 255 (1978)CrossRefGoogle Scholar
  8. 8.
    H.S. Lin, J. Theor. Biol. 60, 449 (1976)CrossRefGoogle Scholar
  9. 9.
    U. Flesch, J. Theor. Biol. 54, 285 (1975)CrossRefGoogle Scholar
  10. 10.
    B.F. Gray, J. Theor. Biol. 82, 473 (1980)CrossRefGoogle Scholar
  11. 11.
    P.L. Chambre, J. Chem. Phys. 20, 1795 (1952)ADSCrossRefGoogle Scholar
  12. 12.
    J.B. Keller, J. Rational Mech. Anal. 5, 715 (1956)MathSciNetGoogle Scholar
  13. 13.
    H.S. Fogler, Elements of Chemical Reaction Engineering, 2nd edition (Prentice-Hall Inc., New Jersey, 1992)Google Scholar
  14. 14.
    J.A. Adam, Math. Biosci. 86, 183 (1987)CrossRefGoogle Scholar
  15. 15.
    J.A. Adam, S.A. Maggelakis, Math. Biosci. 97, 121 (1989)CrossRefGoogle Scholar
  16. 16.
    A.C. Burton, Growth 30, 157 (1966)Google Scholar
  17. 17.
    S.V. Parter, SIAM J., Ser. B 2, 500 (1965)MathSciNetGoogle Scholar
  18. 18.
    W.F. Ames, Nonlinear Ordinary Differential Equations in Transport Process (Academia Press, New York, 1968)Google Scholar
  19. 19.
    M.M. Chawla, C.P. Katti, Numer. Math. 39, 341 (1982)MathSciNetCrossRefGoogle Scholar
  20. 20.
    M.M. Chawla, J. Comput. Appl. Math. 17, 359 (1987)MathSciNetCrossRefGoogle Scholar
  21. 21.
    R.K. Pandey, A.K. Singh, Int. J. Comp. Math. 83, 809 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    R.K. Pandey, A.K. Singh, J. Comput. Appl. Math. 205, 469 (2007)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    R.K. Pandey, A.K. Singh, J. Comput. Appl. Math. 166, 553 (2004)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M.M. Chawla, R. Subramanian, H.L. Sathi, BIT Numer. Math. 28, 88 (1988)MathSciNetCrossRefGoogle Scholar
  25. 25.
    C.P. Katti, Appl. Numer. Math. 5, 451 (1989)MathSciNetCrossRefGoogle Scholar
  26. 26.
    R.K. Pandey, Int. J. Comp. Math. 79, 357 (2002)CrossRefGoogle Scholar
  27. 27.
    H. Caglar, N. Caglar, M. Özer, Chaos Solitions Fractals 39, 1232 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    M. Abukhaled, S.A. Khuri, A. Sayef, Int. J. Numer. Anal. Model. 8, 353 (2011)MathSciNetGoogle Scholar
  29. 29.
    R. Schreiber, SIAM J. Numer. Anal. 17, 547 (1980)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Inc, D.J. Evans, Int. J. Comput. Math. 80, 869 (2003)MathSciNetCrossRefGoogle Scholar
  31. 31.
    N.S. Asaithambi, J.B. Garner, Appl. Math. Comput. 30, 215 (1989)MathSciNetGoogle Scholar
  32. 32.
    M.A. El-Gebeily, I.T. Abu-Zaid, IMA J. Numer. Anal. 18, 179 (1998)MathSciNetCrossRefGoogle Scholar
  33. 33.
    S.A. Khuri, A. Sayfy, Math. Comp. Model. 52, 626 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Danish, S. Kumar, Comput. Chem. Eng. 36, 57 (2012)CrossRefGoogle Scholar
  35. 35.
    M. Kumar, N. Singh, Comp. Chem. Eng. 34, 1750 (2010)CrossRefGoogle Scholar
  36. 36.
    J.H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    A. Janalizadeh, A. Barari, D.D. Ganji, Phys. Lett. A 370, 388 (2007)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    P. Roul, U. Warbhe, J. Comput. Appl. Math. 296, 661 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ahmet Yildirim, Int. J. Numer. Methods Heat Fluid Flow 20, 186 (2010)CrossRefGoogle Scholar
  40. 40.
    P. Roul, U. Warbhe, J. Math. Chem. 54, 1255 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    P. Roul, Commun. Theor. Phys. 60, 269 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    F. Shakeri, M. Dehghan, Prog. Electromagn. Res. 78, 361 (2008)CrossRefGoogle Scholar
  43. 43.
    P. Roul, P. Meyer, Appl. Math. Model. 35, 4234 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations