Plane waves in de Sitter space: Spin-\(\frac{1}{2}\) field

Regular Article
  • 33 Downloads

Abstract.

We employ the coordinate-independent plane wave solution in de Sitter space to study the spin-\(\frac{1}{2}\) particle production. The so-called plane waves in the zero-curvature limit reduce to the usual plane waves in flat space. Previously in (Int. J. Mod. Phys. D 24, 1550052 (2015)) we used such modes to study the instability of the de Sitter space, here, by explicit calculation, we study the sipn-\(\frac{1}{2}\) particle creation in de Sitter space caused by mixing modes.

References

  1. 1.
    A. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic Publishers, 1990)Google Scholar
  2. 2.
    A.G. Riess et al., Astron. J. 116, 1009 (1998) arXiv:astro-ph/9805201 ADSCrossRefGoogle Scholar
  3. 3.
    M.R. Tanhayi, Phys. Rev. D 90, 064010 (2014) arXiv:1402.2893 [gr-qc]ADSCrossRefGoogle Scholar
  4. 4.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, UK, 1984)Google Scholar
  5. 5.
    L. Parker, Phys. Rev. Lett. 21, 562 (1968)ADSCrossRefGoogle Scholar
  6. 6.
    E. Mottola, Phys. Rev. D 31, 754 (1985)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    P.R. Anderson, E. Mottola, Phys. Rev. D 89, 104039 (2014) arXiv:1310.1963 [gr-qc]ADSCrossRefGoogle Scholar
  8. 8.
    P.R. Anderson, E. Mottola, Phys. Rev. D 89, 104038 (2014) arXiv:1310.0030 [gr-qc]ADSCrossRefGoogle Scholar
  9. 9.
    G. Börner, H.P. Dürr, Nuovo Cimento A 64, 669 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    M. Spradlin, A. Strominger, A. Volovich, Les Houches lectures on de Sitter space, hep-th/0110007Google Scholar
  11. 11.
    J. Bros, U. Moschella, J.P. Gazeau, Phys. Rev. Lett. 73, 1746 (1994)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Bros, U. Moschella, Rev. Math. Phys. 8, 327 (1996) [gr-qc/9511019]MathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Bartesaghi, J.P. Gazeau, U. Moschella, M.V. Takook, Class. Quantum Grav. 18, 4373 (2001)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Dixmier, Bull. Soc. Math. France 89, 9 (1961)MathSciNetGoogle Scholar
  15. 15.
    M.V. Takook, Quantum Field Theory in de Sitter Universe: Ambient Space Formalism, arXiv:gr-qc/1403.1204v2Google Scholar
  16. 16.
    J.P. Gazeau, P. Siegl, A. Youssef, SIGMA 6, 011 (2010) DOI:10.3842/SIGMA.2010.011 arXiv:1001.4810 [hep-th]MathSciNetGoogle Scholar
  17. 17.
    T. Garidi, What is mass in de Sitterian physics? hep-th/0309104Google Scholar
  18. 18.
    J.P. Gazeau, P. Siegl, A. Youssef, SIGMA 6, 011 (2010)MathSciNetGoogle Scholar
  19. 19.
    N.N. Bogolubov, General Principles of Quantum Field Theory (Kluwer, Dordrecht, 1987)Google Scholar
  20. 20.
    M.R. Tanhayi, Int. J. Mod. Phys. D 24, 1550052 (2015) arXiv:1408.2799 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Penedones, JHEP 03, 025 (2011) arXiv:1011.1485 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Mirabi, Mod. Phys. Lett. A 29, 1450051 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Basic ScienceIslamic Azad University Central Tehran Branch (IAUCTB)TehranIran
  2. 2.Department of Physics, Qom BranchIslamic Azad UniversityQomIran
  3. 3.Department of Physics, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran

Personalised recommendations