Theory of fractional-ordered thermoelastic diffusion

Regular Article

Abstract.

In this note, the traditional theory of thermoelastic diffusion is replaced by fractional ordered thermoelasticity based on fractional conservation of mass, fractional Taylor series and fractional divergence theorem. We replace the integer-order Taylor series approximation for flux with the fractional-order Taylor series approximation which can remove the restriction that the flux has to be linear, or piece-wise linear and the restriction that the control volume must be infinitesimal. There are two important distinctions between the traditional thermoelastic diffusion, and its fractional equivalent. The first is that the divergence term in the heat conduction and mass diffusion equations are the fractional divergence, and the second is the appearance of strain tensor term in the fractional equation is in the form of “incomplete fractional-strain measures”.

References

  1. 1.
    A. Gemant, Philos. Mag. Ser. 25, 540 (1938)CrossRefGoogle Scholar
  2. 2.
    R.C.L. Bosworth, Nature 157, 447 (1946)ADSCrossRefGoogle Scholar
  3. 3.
    P.G. Nutting, J. Franklin Inst. 191, 678 (1921)CrossRefGoogle Scholar
  4. 4.
    J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering (Springer, Dordrecht, 2007)Google Scholar
  5. 5.
    R. Hilfer, Application of Fractional Calculus to Physics (World Scientific, Singapore, 2000)Google Scholar
  6. 6.
    T.M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Application in Mechanics (Wiley, London, 2014)Google Scholar
  7. 7.
    M.A. Biot, J. Appl. Phys. 27, 240 (1956)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 199 (1967)CrossRefGoogle Scholar
  9. 9.
    A.E. Green, K.A. Lindsay, J. Elast. 2, 1 (1972)CrossRefGoogle Scholar
  10. 10.
    A.E. Green, P.M. Naghdi, J. Therm. Stresses 15, 252 (1992)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    D.S. Chandrasekharaiah, J. Appl. Mech. Rev. 51, 705 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    W. Nowacki, Bull. Acad. Pol. Sci. Ser. Tech. 22, 55 (1974)MathSciNetGoogle Scholar
  13. 13.
    W. Nowacki, Bull. Acad. Pol. Sci. Ser. Tech. 22, 129 (1974)Google Scholar
  14. 14.
    W. Nowacki, Bull. Acad. Pol. Sci. Ser. Tech. 22, 257 (1974)Google Scholar
  15. 15.
    W. Nowacki, Proc. Vib. Prob. 15, 105 (1974)MathSciNetGoogle Scholar
  16. 16.
    H.H. Sherief, F.A. Hamza, H.A. Saleh, Int. J. Eng. Sci. 42, 591 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    H.H. Sherief, A.M.A. EI-Sayed, A.M.A. EI-Latief, Int. J. Solids Struct. 47, 269 (2010)CrossRefGoogle Scholar
  18. 18.
    H.H. Youssef, J. Heat Transf. 132, 1 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    M.A. Ezzat, M.A. Fayik, J. Therm. Stresses 34, 851 (2011)CrossRefGoogle Scholar
  20. 20.
    S. Shaw, B. Mukhopadhyay, Int. J. Appl. Math. Mech. 9, 1 (2013)Google Scholar
  21. 21.
    R. Kimmich, J. Chem. Phys. 284, 243 (2002)Google Scholar
  22. 22.
    Z.M. Odibat, N.T. Shawagfeh, Appl. Math. Comput. 186, 286 (2007)MathSciNetGoogle Scholar
  23. 23.
    M.M. Meerschaert, J. Mortensen, S.W. Wheatcraft, Physica A 367, 181 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    S.W. Wheatcraft, M.M. Meerschaert, Adv. Water Res. 31, 1377 (2008)CrossRefGoogle Scholar
  25. 25.
    K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley and Sons, Inc., New York, 1993)Google Scholar
  26. 26.
    G. Jumarle, Cent. Eur. J. Phys. 11, 617 (2013)Google Scholar
  27. 27.
    M.A. Biot, J. Aero-Space Sci. 26, 401 (1959)MathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Indian Institute of Engineering Science and TechnologyShibpurIndia

Personalised recommendations