Advertisement

Effect of non-linear capacitance on a non-uniform transmission line

  • L. Kumar
  • V. Shankar Pandey
  • H. Parthasarathy
  • V. Shrimali
  • G. Varshney
Regular Article

Abstract.

In this paper we derive a non-linear polarization electric field relationship in a dielectric by considering harmonics binding of the electrons to its nuclei. We apply this theory to a transmission line to model the non-linear, inhomogeneous frequency-dependent capacitance of the line and approximate an expression for the line current when the line is terminated by load impedance. We then suggest a method for estimating the inhomogeneous, frequency-dependent non-linear component of the line capacitance from the measurements of the far field electromagnetic field radiated by the line current. The far field magnetic vector potential is calculated from the line current by the standard Green’s function integration in free space.

Keywords

Transmission Line Line Current Volterra Series Line Voltage Magnetic Vector Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Khalaj-Amirhosseini, Prog. Electromagn. Res. 65, 15 (2006)CrossRefGoogle Scholar
  2. 2.
    H.G. Brachtendorf, R. Laur, IEEE Trans. Magn. 37, 5 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Amharech, H. Kabbaj, Prog. Electromagn. Res. C 28, 27 (2012)CrossRefGoogle Scholar
  4. 4.
    Khair Shamaileh et al., Prog. Electromagn. Res. C 44, 1 (2013)CrossRefGoogle Scholar
  5. 5.
    K.A. Shamaileh, N. Dib, Prog. Electromagn. Res. C 19, 37 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Khalaj-Amirhosseini, Prog. Electromagn. Res. C 1, 95 (2008)CrossRefGoogle Scholar
  7. 7.
    R.N. Ghose, IRE Trans. Microw. Theory Tech. 5, 213 (1957)ADSCrossRefGoogle Scholar
  8. 8.
    R.E. Collin, Foundations for Microwave Engineering (IEEE Press, John Wiley & Sons Inc. New York, USA, 1996)Google Scholar
  9. 9.
    M. Khalaj-Amirhosseini, Prog. Electromagn. Res. 60, 107 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Khalaj-Amirhosseini, IEEE Trans. Electromagn. Compat. 48, 594 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Cheldavi, M. Kamarei, Naeini S. Safavi, IEEE Trans. Electromagn. Compat 42, 308 (2000)CrossRefGoogle Scholar
  12. 12.
    A. Cheldavi, IEEE Trans. Micro. Theory. Tech. 49, 197 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    A. Cheldavi, IEE Proc. Micro. Anten. Prop. 150, 279 (2003)CrossRefGoogle Scholar
  14. 14.
    M. Khalaj-Amirhosseini, Prog. Electromagn. Res. 58, 187 (2006)CrossRefGoogle Scholar
  15. 15.
    H. Yan et al., Prog. Electromagn. Res. B 51, 291 (2013)CrossRefGoogle Scholar
  16. 16.
    F.G. Gharakhili, M. Shahabadi, M. Hakkak, Prog. Electromagn. Res. 96, 237 (2009)CrossRefGoogle Scholar
  17. 17.
    C.E. Baum, Extension of the BLT equation in the time domain, Interaction Note 553 (1999)Google Scholar
  18. 18.
    F.M. Tesche, IEEE Trans. Electromagn. Compat. 49, 3 (2007)CrossRefGoogle Scholar
  19. 19.
    L. Xie, Y.Z. Lei, IEEE Trans. Electromagn. Compat. 51, 805 (2009)CrossRefGoogle Scholar
  20. 20.
    F.M. Tesche, IEEE Trans. Electromagn. Compat. 49, 427 (2007)CrossRefGoogle Scholar
  21. 21.
    A. Taeb, Asia-Pacific Microwave Conference Proceedings (2005) 5Google Scholar
  22. 22.
    H.Y. Xie et al., IEEE Trans. Electromagn. Compat. 51, 811 (2009)CrossRefGoogle Scholar
  23. 23.
    C.R. Paul, IEEE Trans. Electromagn. Compat. 36, 342 (2009)CrossRefGoogle Scholar
  24. 24.
    Y. Bayram, J.L. Volakis, IEEE Trans. Microwave Theory Techn. 55, 941 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    D.E. Root et al., IEEE Trans. Microwave Theory Techn. 53, 3656 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    R. Camassa, A. Findikoglu, G. Lythe, SIAM J. Appl. Math. 66, 1 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • L. Kumar
    • 1
  • V. Shankar Pandey
    • 2
  • H. Parthasarathy
    • 3
  • V. Shrimali
    • 4
  • G. Varshney
    • 1
  1. 1.Department of Electronics and Communication EngineeringNational Institute of TechnologyDelhiIndia
  2. 2.Department of PhysicsNational Institute of TechnologyDelhiIndia
  3. 3.Department of Electronics and Communication EngineeringNetaji Subhas Institute of TechnologyDelhiIndia
  4. 4.Department of Electronics and Communication EngineeringG.B. Pant Govt. Engineering CollegeDelhiIndia

Personalised recommendations