Non-Abelian magnetic black strings versus black holes

Regular Article

Abstract.

We present \( d+1\) -dimensional pure magnetic Yang-Mills (YM) black strings (or 1-branes) induced by the d -dimensional Einstein-Yang-Mills-Dilaton black holes. The Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings (with less number of fields) is done by adding an extra, compact coordinate. This amounts to the change of horizon topology from \( S^{d-2}\) to a product structure. Our black string in 5 dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4-dimensional black hole.

Keywords

Black Hole Black Hole Solution Black String Horizon Topology Quasi Local Mass 

References

  1. 1.
    B. Hartmann, Phys. Lett. B 602, 231 (2004)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Y. Brihaye, B. Hartmann, E. Radu, Phys. Rev. D 71, 085002 (2005)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Y. Brihaye, B. Hartmann, E. Radu, Phys. Rev. D 72, 104008 (2005)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Y. Brihaye, B. Hartmann, Class. Quantum Grav. 22, 5145 (2005)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Y. Brihaye, E. Radu, Phys. Lett. B 658, 164 (2008)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    B. Hartmann, AIP Conf. Proc. 1122, 137 (2009)CrossRefADSGoogle Scholar
  7. 7.
    T. Wiseman, Class. Quantum Grav. 20, 1137 (2003)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    T. Delsate, JHEP 07, 035 (2009)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    P. Figueras, K. Murata, H.S. Reall, JHEP 11, 071 (2012)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    R. Gregory, R. Laflamme, Phys. Rev. Lett. 70, 2837 (1993)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    R. Gregory, R. Laflamme, Nucl. Phys. B 428, 399 (1994)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    V.P. Frolov, A.A. Shoom, Phys. Rev. D 79, 104002 (2009)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    S.H. Mazharimousavi, M. Halilsoy, Z. Amirabi, Gen. Relativ. Gravit. 42, 261 (2010)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    T. Ortín, Gravity and Strings (Cambridge University Press, Cambridge, 2006) p. 350Google Scholar
  15. 15.
    T.T. Wu, C.N. Yang, in Properties of Matter Under Unusual Conditions, edited by H. Mark, S. Fernbach (Interscience, New York, 1969) p. 349Google Scholar
  16. 16.
    S.H. Mazharimousavi, M. Halilsoy, Phys. Rev. D 76, 087501 (2007)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    S.H. Mazharimousavi, M. Halilsoy, Phys. Lett. B 681, 190471 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    S.H. Mazharimousavi, M. Halilsoy, Phys. Lett. B 659, 471 (2008)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    P.B. Yasskin, Phys. Rev. D 12, 2212 (1975)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    P. Figueras, M. Kunesch, S. Tunyasuvunakool, Phys. Rev. Lett. 116, 071102 (2016)CrossRefADSGoogle Scholar
  21. 21.
    J.D. Brown, J.W. York, Phys. Rev. D 47, 1407 (1993)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    K.C.K. Chan, J.H. Horne, R.B. Mann, Nucl. Phys. B 447, 441 (1995)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    G. Clément, C. Leygnac, Phys. Rev. D 70, 084018 (2004)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsEastern Mediterranean UniversityMersinTurkey

Personalised recommendations