Adsorption of carbon monoxide on boroxol-ring-doped zigzag boron nitride nanotube: Electronic study via DFT

Regular Article


Previous works have already demonstrated that reactivity and sensitivity of boron nitride nanotubes (BNNTs) toward gas molecules can be modified by impurity. In this work, three nitrogen atoms of BNNT \( (7,0)\) are replaced with oxygen to study the adsorption of CO molecule through the surface of boroxol ring with different adsorption patterns, including side-on and end-on. All calculations have been done using the DFT-B3LYP/6-31G * level of theory, and their electronic energies are corrected by gCP and D3 correction terms. The calculated binding energies are large, which indicates that CO molecule undergoes chemical adsorption. NBO results showed that the charge transfer occurs from the tube to the gas molecule, which can slightly change the electronic properties of the tube. Density of state (DOS) and partial DOS (PDOS) analysis revealed that adsorption of CO molecule on the boroxol ring position is covalent in nature. The Laplacian of electron density, Lagrangian kinetic energy density, Hamiltonian kinetic energy density, and potential energy density at bond critical points between the tube and CO indicate that the interaction between the tube and CO molecule is covalent in nature. Topological analysis of the electron localization function shows that electrons in the new formed bonds are approximately localized, meaning that the nature of the adsorption process is chemical covalent.


Boron Nitride Bond Critical Point Electron Localization Function Kinetic Energy Density Potential Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Air Pollution Monitoring (U.S. Environmental Protection Agency),
  2. 2.
    P. Tikuisis, D.M. Kane, T.M. McLellan, F. Buick, S.M. Fairburn, J. Appl. Physiol. 72, 1311 (1992)Google Scholar
  3. 3.
    OSHA fact sheet, Carbon monoxide poisining (U.S. Department of Labor, Occupational Safety and Health Administration, 2002)Google Scholar
  4. 4.
    M. Cho, C. Hess, M. Bonn, Phys. Rev. B 65, 205423 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kawai, Bull. Mater. Sci. 20, 769 (1997)CrossRefGoogle Scholar
  6. 6.
    G.P. Lithoxoos, A. Labropoulos, L.D. Peristeras, N. Kanellopoulos, J. Samios, I.G. Economou, J. Supercrit. Fluids 55, 510 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Rubeš, L. Grajciar, O. Bludský, A.D. Wiersum, P.L. Llewellyn, P. Nachtigall, Chem. Phys. Chem. 13, 488 (2012)Google Scholar
  8. 8.
    S. Santucci, S. Picozzi, F.D. Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J.M. Kenny, B. Delley, J. Chem. Phys. 119, 10904 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    I. Voleská, P. Nachtigall, E. Ivanova, K. Hadjiivanov, R. Bulánek, Catal. Today 243, 53 (2015)CrossRefGoogle Scholar
  10. 10.
    O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 77, 125416 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    A.A. EL-Barbary, G.H. Ismail, A.M. Babeer, J. Surf. Eng. Mater. Adv. Technol. 3, 287 (2013)Google Scholar
  12. 12.
    V. Nagarajan, R. Chandiramouli, Superlattices Microstruct. 78, 22 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    P.N. Samanta, K.K. Das, Chem. Phys. Lett. 577, 107 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    P.N. Samanta, K.K. Das, RSC Adv. 4, 59056 (2014)CrossRefGoogle Scholar
  15. 15.
    X.R. Shi, J. Wang, K. Hermann, J. Phys. Chem. C 114, 13630 (2010)CrossRefGoogle Scholar
  16. 16.
    J.F. Espinal, A. Montoya, F. Mondragon, T.N. Truong, J. Phys. Chem. B 108, 1003 (2004)CrossRefGoogle Scholar
  17. 17.
    J.F. Jia, H.S. Wu, H. Jiao, Physica B 381, 90 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    R.J. Baierle, T.M. Schmidt, A. Fazzio, Solid State Commun. 142, 49 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    R. Wang, D. Zhang, Aust. J. Chem. 6, 941 (2008)CrossRefGoogle Scholar
  20. 20.
    P. Piquini, R.J. Baierle, T.M. Schmidt, A. Fazzio, Nanotechnology 16, 827 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    T.M. Schmidt, R.J. Baierle, P. Piquini, A. Fazzio, Phys. Rev. B 67, 113407 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    R.J. Baierle, P. Piquini, T.M. Schmidt, A. Fazzio, J. Phys. Chem. B 110, 21184 (2006)CrossRefGoogle Scholar
  23. 23.
    R.X. Wang, R.X. Zhu, D.J. Zhang, Chem. Phys. Lett. 467, 131 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    R. Wang, D. Zhang, Y. Liu, C. Liu, Nanotechnology 20, 505704 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    J. Zhang, K.P. Loh, J.W. Zheng, M.B. Sullivan, P. Wu, Phys. Rev. B 75, 245301 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    S.S. Batsanov, A.S. Batsanov, Introduction to structural chemistry (Springer, Dordrecht, 2012)Google Scholar
  27. 27.
    X.J. Dai, Y. Chen, Z. Chen, P.R. Lamb, L.H. Li, J.D. Plessis, D.G. McCulloch, X. Wang, Nanotechnology 22, 245301 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    A. Boshra, A. Seif, Can. J. Phys. 87, 647 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    A. Seif, A. Boshra, J. Mol. Struct. (THEOCHEM) 895, 96 (2009)CrossRefGoogle Scholar
  30. 30.
    L.D.A. Silva, S.C. Guerini, V. Lemos, J.M. Filho, IEEE Trans. Nanotech. 5, 517 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    J. Wu, W. Zhang, Solid State Commun. 149, 486 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)CrossRefGoogle Scholar
  34. 34.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery-Jr., J.E. Peralta, F. Ogliaro, M. Bearpar, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02-SMP (Gaussian, Inc., Wallingford CT, 2009)Google Scholar
  35. 35.
    S. Tomic, B. Montanari, N.M. Harrison, Physica E 40, 2125 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    H. Kruse, L. Goerigk, S. Grimme, J. Org. Chem. 77, 10824 (2012)CrossRefGoogle Scholar
  37. 37.
    E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1Google Scholar
  38. 38.
    N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comp. Chem. 29, 839 (2008)CrossRefGoogle Scholar
  39. 39.
    T. Lu, F. Chen, J. Comp. Chem. 33, 580 (2012)CrossRefGoogle Scholar
  40. 40.
    M.H. Gordon, J.A. Pople, J. Chem. Phys. 89, 5777 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    G.G. Hall, Philos. Mag. 6, 249 (1961)ADSCrossRefGoogle Scholar
  42. 42.
    E. Zahedi, Physica B 407, 3841 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    E. Zahedi, C. R. Chim. 16, 189 (2013)CrossRefGoogle Scholar
  44. 44.
    E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 117, 5529 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    B. Silvi, A. Savin, Mineral Mag. A 58, 842 (1994)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Shahrood BranchIslamic Azad UniversityShahroodIran
  2. 2.Department of Chemical Engineering, Shahrood BranchIslamic Azad UniversityShahroodIran
  3. 3.Department of Environmental Engineering, Shahrood BranchIslamic Azad UniversityShahroodIran

Personalised recommendations