Skip to main content
Log in

Baryon spectroscopy in a three-quark model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we present a three-body quark model for investigating the internal structure of baryons as well as baryon spectroscopy. In order to describe the SU(6) -invariant part of the spectrum, we assumed the spin-independent part of the interaction hypercentral, and treated using the hyperspherical formalism. For SU(6) -invariant potential, we used a generalized version of the popular “Coulomb-plus-linear” potential which contains “linear-plus-logarithmic” terms as confinement part and some inverse power terms. To obtain an analytical solution, we applied some approximations for dealing with problematic linear and logarithmic terms, leading to a qualitative reproducing of the spectrum. Then, to describe the hyperfine structure of the baryon and the splittings within the SU(6) -multiplets, we used the generalized Gürsey-Radicati Mass Formula as a SU(6) breaking interaction. Our calculations lead to a generally fair description of the baryon spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M. Giannini, E. Santopinto, Chin. J. Phys. 53, 020301 (2015)

    Google Scholar 

  2. M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys. Lett. B 364, 231 (1995)

    Article  ADS  Google Scholar 

  3. L.Ya. Glozman, D.O. Riska, Phys. Rep. C 268, 263 (1996)

    Article  ADS  Google Scholar 

  4. R. Bijker, F. Iachello, A. Leviatan, Ann. Phys. (N.Y.) 284, 89 (2000)

    Article  ADS  Google Scholar 

  5. Y. Sumino, Phys. Lett. B 571, 173 (2003)

    Article  ADS  Google Scholar 

  6. S. Bali, Phys. Rep. 343, 1 (2001)

    Article  ADS  Google Scholar 

  7. S. Bali et al., Phys. Rev. D 62, 054503 (2000)

    Article  ADS  Google Scholar 

  8. M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 25, 241 (2005)

    Article  ADS  Google Scholar 

  9. W. Melnitchouk et al., Phys. Rev. D 67, 114506 (2003)

    Article  ADS  Google Scholar 

  10. JLQCD Collaboration (S. Aoki et al.), Phys. Rev. D 68, 054502 (2003)

    Google Scholar 

  11. C. Alexandrou, P. de Forcrand, O. Jahn, Nucl. Phys. Proc. Suppl. 119, 667 (2003)

    Article  ADS  Google Scholar 

  12. M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys. Lett. B 364, 231 (1995)

    Article  ADS  Google Scholar 

  13. C.D. Lin, Phys. Rep. 257, 1 (1995)

    Article  ADS  Google Scholar 

  14. Yu.A. Simonov, Sov. J. Nucl. Phys. 3, 461 (1966)

    MathSciNet  Google Scholar 

  15. J. Ballot, M. Fabre de la Ripelle, Ann. Phys. (N.Y.) 127, 62 (1980)

    Article  ADS  Google Scholar 

  16. M.M. Giannini, E. Santopinto, A. Vassallo, Prog. Part. Nucl. Phys. 50, 263 (2003)

    Article  ADS  Google Scholar 

  17. V. Aqulanti, S. Tonzano, J. Chem. Phys. 126, 4066 (2004)

    Article  ADS  Google Scholar 

  18. F. Zernike, H.C. Brinkman, Proc. Kon. Ned. Acad. Wet. 33, 3 (1935)

    Google Scholar 

  19. E. Santopinto, M.M. Giannini, F. Iachello, Symmetries in Science VII, edited by B. Gruber (Plenum Press, New York, 1995) p. 445

  20. F. Iachello, in Symmetries in Science VII, edited by B. Gruber (Plenum Press, New York, 1995) p. 213

  21. L.Ya. Glozman, D.O. Riska, Phys. Rep. C 268, 263 (1996)

    Article  ADS  Google Scholar 

  22. N. Isgur, G. Karl, Phys. Rev. D 20, 1191 (1979)

    Article  ADS  Google Scholar 

  23. S. Bali et al., Phys. Rev. D 62, 054503 (2000)

    Article  ADS  Google Scholar 

  24. T. Kawanai, S. Sasaki, Phys. Rev. Lett. 107, 091601 (2011)

    Article  ADS  Google Scholar 

  25. C.L. Pekeris, Phys. Rev. 45, 98 (1934)

    Article  ADS  Google Scholar 

  26. R.L. Greene, C. Aldrich, Phys. Rev. A 143, 2363 (1976)

    Article  ADS  Google Scholar 

  27. C. Berkdemir, Nucl. Phys. A 770, 32 (2006)

    Article  ADS  Google Scholar 

  28. W.C. Qiang, S.H. Dong, Phys. Lett. A 368, 13 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. G.F. Wei, S.H. Dong, Phys. Lett. A 373, 2428 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. C. Tezcan, R. Sever, Int. J. Theor. Phys. 48, 337 (2009)

    Article  MathSciNet  Google Scholar 

  31. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

  32. E. Santopinto, F. Iachello, M.M. Giannini, Eur. Phys. J. A 1, 307 (1998)

    Article  ADS  Google Scholar 

  33. F. Güersey, L.A. Radicati, Phys. Rev. Lett. 13, 173 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  34. Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aslanzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslanzadeh, M., Rajabi, A.A. Baryon spectroscopy in a three-quark model. Eur. Phys. J. Plus 131, 118 (2016). https://doi.org/10.1140/epjp/i2016-16118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16118-3

Keywords

Navigation