Natural convection in a wavy open porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model

Regular Article


Natural convective heat transfer and fluid flow in an open porous cavity filled with a nanofluid is studied numerically using the Tiwari and Das nanofluid model. The transport equations for mass, momentum and energy formulated in dimensionless stream function and temperature are solved numerically using a second-order accurate finite difference method. Particular efforts are focused on the effects of the governing parameters on the heat and fluid flow. It is found that an increase in undulation number of the wavy vertical wall leads to an attenuation of convective flow and a decrease in the heat transfer rate.


Heat Transfer Porous Medium Nusselt Number Rayleigh Number Heat Transfer Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.V. Shenoy, Adv. Heat Transfer 24, 101 (1994)CrossRefGoogle Scholar
  2. 2.
    D.B. Ingham, I. Pop (Editors), Transport Phenomena in Porous Media, Vol. III (Elsevier, Oxford, 2005)Google Scholar
  3. 3.
    K. Vafai (Editor), Handbook of Porous Media (Taylor and Francis, New York, 2005)Google Scholar
  4. 4.
    D.A. Nield, A. Bejan, Convection in Porous Media, 4th edition (Springer, New York, 2013)Google Scholar
  5. 5.
    J.D. Jansen, A Systems Description of Flow Through Porous Media (Springer, New York, 2013)Google Scholar
  6. 6.
    A. Bagchi, F.A. Kulacki, Natural Convection in Superposed Fluid-Porous Layers (Springer, New York, 2014)Google Scholar
  7. 7.
    S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Developments and Applications of Non-Newtonian Flows, edited by D.A. Siginer, H.P. Wang, FED-Vol. 231/MD-Vol. 66 (ASME, New York, 1995) pp. 99--105Google Scholar
  8. 8.
    S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys. Lett. 79, 2252 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    J.A. Eastman, S.U.S. Choi, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    S.K. Das, N. Putra, P. Thiesen, W. Roetzel, ASME J. Heat Transfer 125, 567 (2003)CrossRefGoogle Scholar
  11. 11.
    J. Buongiorno, W. Hu, Nanofluid coolant for advanced nuclear power plants, Paper No. 5705, in Proceedings of ICAPP’05, Seoul, May 15--19 (2005)Google Scholar
  12. 12.
    C. Kleinstreuer, J. Li, J. Koo, Int. J. Heat Mass Transf. 51, 5590 (2008)CrossRefGoogle Scholar
  13. 13.
    K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transf. 46, 3639 (2003)CrossRefGoogle Scholar
  14. 14.
    S.E.B. Maliga, S.M. Palm, C.T. Nguyen, G. Roy, N. Galanis, Int. J. Heat Fluid Flow 26, 530 (2005)CrossRefGoogle Scholar
  15. 15.
    R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transf. 50, 2002 (2007)CrossRefGoogle Scholar
  16. 16.
    H.F. Oztop, E. Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008)CrossRefGoogle Scholar
  17. 17.
    S.M. Aminossadati, B. Ghasemi, Eur. J. Mech. B/Fluids 28, 630 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    B. Ghasemi, S.M. Aminossadati, Num. Heat Transf. Part A 55, 807 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    G.V. Kuznetsov, M.A. Sheremet, Comput. Thermal Sci. 3, 427 (2011)CrossRefGoogle Scholar
  20. 20.
    A.H. Mahmoudi, M. Shahi, A.M. Shahedin, N. Hemati, Int. Commun. Heat Mass Transf. 38, 110 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Celli, Int. J. Heat Fluid Flow 44, 327 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Buongiorno, ASME J. Heat Transf. 128, 240 (2006)CrossRefGoogle Scholar
  23. 23.
    S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep Nanofluids: Science and Technology (Wiley, New Jersey, 2007)CrossRefGoogle Scholar
  24. 24.
    S. Kakaç, A. Pramuanjaroenkij, Int. J. Heat Mass Transf. 52, 3187 (2009)CrossRefGoogle Scholar
  25. 25.
    K.V. Wong, O.D. Leon, Adv. Mech. Eng. 2, 519659 (2010) DOI:10.1155/2010/519659 CrossRefGoogle Scholar
  26. 26.
    R. Saidur, K.Y. Leong, H.A. Mohammad, Renew. Sustain. Energy Rev. 15, 1646 (2011)CrossRefGoogle Scholar
  27. 27.
    D. Wen, G. Lin, S. Vafaei, K. Zhang, Particuology 7, 141 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Jaluria, O. Manca, D. Poulikakos, K. Vafai, L. Wang, Adv. Mech. Eng. 4, 972973 (2012)CrossRefGoogle Scholar
  29. 29.
    O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, Int. J. Heat Mass Transf. 57, 582 (2013)CrossRefGoogle Scholar
  30. 30.
    F. Sakai, W. Li, A. Nakayama, A rigorous derivation and its applications of volume averaged transport equations for heat transfer in nanofluids saturated metal foam, in Proceedings of 15th International Heat Transfer Conference, IHTC-15, August 10-15, Kyoto, Japan, (IHTC, 2015) DOI:10.1615/IHTC15.pmd.008575
  31. 31.
    M.A. Sheremet, T. Grosan, I. Pop, Trans. Porous Media 106, 595 (2015)CrossRefGoogle Scholar
  32. 32.
    M.A. Sheremet, S. Dinarvand, I. Pop, Physica E 69, 332 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    I.A. Aleshkova, M.A. Sheremet, Int. J. Heat Mass Transf. 53, 5308 (2010)CrossRefGoogle Scholar
  34. 34.
    M.A. Sheremet, T.A. Trifonova, Num. Heat Transf. Part A 64, 994 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    M.A. Sheremet, I. Pop, Int. J. Heat Mass Transf. 79, 137 (2014)CrossRefGoogle Scholar
  36. 36.
    M.A. Sheremet, T. Grosan, I. Pop, ASME J. Heat Transfer 136, 082501 (2014)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Theoretical MechanicsTomsk State UniversityTomskRussia
  2. 2.Institute of Power EngineeringTomsk Polytechnic UniversityTomskRussia
  3. 3.Department of Applied MathematicsBabeş-Bolyai UniversityCluj-NapocaRomania
  4. 4.S.A.I.C.OArlingtonUSA

Personalised recommendations