The deletion-contraction method for counting the number of spanning trees of graphs

Regular Article


In this paper we will be concerned with some combinatorial methods that enable us to determine the number of spanning trees of a graph. Although these methods apply only to rather restricted classes of graphs, sometimes strikingly simple calculations reveal the number of spanning trees of seemingly complex graphs, we presented techniques to derive spanning trees recursions in graphs. Then, we gave the generalization for these techniques. Finally, making use of our results, we investigated the complexity of some new graphs.


Span Tree Connected Graph Complete Graph Common Vertex Complete Bipartite Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G.G. Kirchhoff, Ann. Phg. Chem. 72, 497 (1847).ADSCrossRefGoogle Scholar
  2. 2.
    E. Teufl, S. Wanger, J. Phys. A 43, 491 (2010).CrossRefGoogle Scholar
  3. 3.
    F.Y. Wu, J. Phys. A 10, 113 (1977).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J.L. Felker, R. Lyons, J. Phys. A 36, 8361 (2003).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Shrock, F.Y. Wu, J. Phys. A 33, 3881 (2000).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S.N. Daoud, Eur. J. Phys. Plus 129, (2014).Google Scholar
  7. 7.
    S.N. Daoud, J. Math. Probl. Eng. 2013, 820549 (2013).MathSciNetGoogle Scholar
  8. 8.
    S.N. Daoud, J. Math. Probl. Eng. 2014, 965105 (2014).MathSciNetGoogle Scholar
  9. 9.
    Xue-rong Yang, Talip Acenjian, Discrete Math. 169, 293 (1997).MathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Cvetkoviě, M. Doob, H. Sachs, Spectra of graphs: Theory and applications, third edition (Johann Ambrosius Barth, Heidelberg, 1995).Google Scholar
  11. 11.
    F.T. Boesch, J.F. Wang, A conjecture on the number of spanning trees in the square of a cycle, in Notes from New York Graph Theory Day V (New York Academy Sciences, New York, 1982) p. 16.Google Scholar
  12. 12.
    F. Zhang, X. Yong, Sci. China Ser. A 43, 264 (1999).MathSciNetGoogle Scholar
  13. 13.
    G. Baron, H. Prodinger, R. Tichy, F. Boesch, J. Wang, Fibonacci Quart. 23, 258 (1985).MathSciNetGoogle Scholar
  14. 14.
    F.T. Boesch, J. Graph Theory 10, 339 (1986).MathSciNetCrossRefGoogle Scholar
  15. 15.
    F.T. Boesch, A. Salyanarayana in C.L. Suffel, Networks 54, 99 (2009).MathSciNetCrossRefGoogle Scholar
  16. 16.
    T. Atajan, H. Inaba, Network reliability analysis by counting the number of spanning trees, in ISCIT 2004, IEEE International symposium on Communication and Information technology, Vol. 1 (IEEP, 2004) pp. 601--604.Google Scholar
  17. 17.
    W. Feussner, Ann. Phys. (Leipzig) 9, 1304 (1902).ADSCrossRefGoogle Scholar
  18. 18.
    W. Feussner, Ann. Phys. (Leipzig) 15, 385 (1904).ADSCrossRefGoogle Scholar
  19. 19.
    G.A. Cayley, Quart. J. Pure Appl. Math. 23, 376 (1889).Google Scholar
  20. 20.
    H. Prüfer, Arch. Math. Phys. 27, 742 (1918).Google Scholar
  21. 21.
    C.D. Godsil, G.F. Royle, Algebraic Graph Theory (Springer-Verlag, New York, 2001).Google Scholar
  22. 22.
    N. Biggs, Algebraic Graph Theory, 2nd edition (Cambridge University Press, Cambridge, 1993) pp. 205.Google Scholar
  23. 23.
    F.T. Boesch, H. Prodinger, J. Graphs Combinat. 2, 191 (1986).MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceTaibah UniversityAl-MadinahSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceMenoufia UniversityShebin El KomEgypt

Personalised recommendations