Niche construction game cancer cells play

Review
Part of the following topical collections:
  1. Focus Point on the Physics of Cancer

Abstract

Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.

Keywords

Cancer Stem Cell Niche Construction Secondary Site Secondary Organ Niche Construction Theory 

References

  1. 1.
    J.B. Beltman, P. Haccou, C. ten Cate, Evolution 58, 35 (2004).CrossRefGoogle Scholar
  2. 2.
    F.J. Odling-Smee, K.N. Laland, M.F. Feldman, Niche Construction: The Neglected Process in Evolution, in Monographs in Population Biology (Princeton University Press, 2003).Google Scholar
  3. 3.
    F.J. Odling-Smee, D. Erwin, E. Palkovacs, M.W. Feldman, K.N. Laland, Quart. Rev. Biol. 88, 3 (2013).CrossRefGoogle Scholar
  4. 4.
    F.J. Odling-Smee, J. Theor. Biol. 2, 276 (2007).CrossRefGoogle Scholar
  5. 5.
    K.N. Laland, F.J. Odling-Smee, S. Myles, Nat. Rev. Genet. 11, 137 (2010).CrossRefGoogle Scholar
  6. 6.
    M.F. Boni, M.W. Feldman, Evolution 59, 477 (2005).Google Scholar
  7. 7.
    Y. Kunisaki, I. Bruns, C. Scheiermann, S. Pinho, J. Ahmed, D. Zhang, M. Mizoguchi, Q. Wei, D. Lucas, K. Ito, J.C. Mar, A. Bergman, P.S. Frenette, Nature 502, 637 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    D. Hanahan, R.A. Weinberg, Cell 144, 646 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Greaves, C.C. Maley, Nature 481, 306 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Nature 414, 105 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    N.D. Marjanovic, R.A. Weinberg, C.L. Chaffer, Clin. Chem. 59, 168 (2013).CrossRefGoogle Scholar
  12. 12.
    T. Borovski, F. De Sousa E Melo, L. Vermeulen, J.P. Medema, Cancer Res. 71, 634 (2011).CrossRefGoogle Scholar
  13. 13.
    L. Vermeulen, F. De Sousa E Melo, M. van der Heijden, K. Cameron, J.H. de Jong, T. Borovski, J.B. Tuynman, M. Todaro, C. Merz, H. Rodermond, M.R. Sprick, K. Kemper, D.J. Richel, G. Stassi, J.P. Medema, Nature 12, 468 (2010).Google Scholar
  14. 14.
    L. Ritsma, E.J.A. Steller, E. Beerling, C.J.M. Loomans, A. Zomer, C. Gerlach, N. Vrisekoop, D. Seinstra, L. van Gurp, R. Schäfer, D.A. Raats, A. de Graaff, T.N. Schumacher, E.J.P. de Koning, I.H. Borel Rinkes, O. Kranenburg, J. van Rheenen, Sci. Transl. Med. 4, 158ra145 (2012).CrossRefGoogle Scholar
  15. 15.
    B. Gligorijevic, A. Bergman, J. Condeelis, Plos Biology 12, e1001995 (2014).CrossRefGoogle Scholar
  16. 16.
    J. Grahovac, A. Wells, Lab Invest. 94, 31 (2014).CrossRefGoogle Scholar
  17. 17.
    D.F. Quail, J.A. Joyce, Nat. Med. 19, 1423 (2013).CrossRefGoogle Scholar
  18. 18.
    M. Chittezhath, M.K. Dhillon, J.Y. Lim, D. Laoui, I.N. Shalova, Y.L. Teo, J. Chen, R. Kamaraj, L. Raman, J. Lum, T.P. Thamboo, E. Chiong, F. Zolezzi, H. Yang, J.A. Van Ginderachter, M. Poidinger, A.S.C. Wong, S.K. Biswas, Immunity 41, 815 (2014).CrossRefGoogle Scholar
  19. 19.
    H. Peinado, M. Aleckovic, S. Lavotshkin, I. Matei, B. Costa-Silva, G. Moreno-Bueno, M. Hergueta-Redondo, C. Williams, G. Garcia-Santos, C. Ghajar, A. Nitadori-Hoshino, C. Hoffman, K. Badal, B.A. Garcia, M.K. Callahan, J. Yuan, V.R. Martins, J. Skog, R.N. Kaplan, M.S. Brady, J.D. Wolchok, P.B. Chapman, Y. Kang, J. Bromberg, D. Lyden, Nat. Med. 18, 883 (2012).CrossRefGoogle Scholar
  20. 20.
    T. Oskarsson, S. Acharyya, Xiang H.-F. Zhang, S. Vanharanta, S.F. Tavazoie, P.G. Morris, R.J. Downey, K. Manova-Todorova, E. Brogi, J. Massague, Nat. Med. 17, 867 (2011).CrossRefGoogle Scholar
  21. 21.
    K.J. Luzzi, I.C. MacDonald, E.E. Schmidt, N. Kerkvliet, V.L. Morris, A.F. Chambers, A.C. Groom, Am. J. Pathol. 153, 865 (1988).CrossRefGoogle Scholar
  22. 22.
    A. Pocheville, in Handbook of Evolutionary Thinking in the Sciences, edited by T. Heams (Springer Science+Business Media, Dordrecht, 2015) chapt. 26.Google Scholar
  23. 23.
    K.R. Yang, S.M. Mooney, J.C. Zarif, D.S. Coffey, R.S. Tachman, K.J. Pienta, J. Cell. Biochem. 115, 1478 (2014).CrossRefGoogle Scholar
  24. 24.
    B. Diaz, A. Yuen, S. Iizuka, S. Higashiyama, S.A. Courtneidge, J. Cell Biol. 201, 279 (2013).CrossRefGoogle Scholar
  25. 25.
    N. Erez, L.M. Coussens, Int. J. Cancer 128, 2536 (2011).CrossRefGoogle Scholar
  26. 26.
    A.J. Lymbery, Trends Parasitol. 31, 134 (2015).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Systems and Computational Biology DepartmentAlbert Einstein College of MedicineBronxUSA
  2. 2.Bioengineering DepartmentTemple UniversityPhiladelphiaUSA
  3. 3.Cancer Biology ProgramFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations