Advertisement

Fission and spallation data evaluation using induced-activity method

  • G. S. Karapetyan
Regular Article

Abstract

The induced-activity investigations in off-line analysis performed in different experiments, concerning pre-actinide and actinide nuclei, are here presented and discussed. Generalized expressions for the determination of independent yields/cross sections of radioactive nuclei, formed in the targets, are derived and analysed. The fragment mass distribution from 238U, 232Th and 181Ta photofission at the bremsstrahlung end-point energies of 50 and 3500 MeV, and from 241Am, 238U and 237Np fission induced by 660 MeV protons, are scrutinized from the point of view of the multimodal fission approach. The results of these studies are hence compared with theoretical model calculations using the CRISP code. A multimodal fission option has been added to this code, which allows to account the contribution of symmetric and asymmetric (superasymmetric) fission to the total fission yield. Moreover, this work contains the general results obtained in the analysis of the isomer ratios of fission fragments from 238U and 232Th targets at the bremsstrahlung end-point energies of 50 and 3500 MeV. Moreover, the values of the average angular momenta of primary fragments are estimated by using the statistical model calculation. We subsequently discuss the complex particle-induced reaction, such as heavy ions and deuterons, by using the thick-target thick-catcher technique and the two-step vector model framework as well. This is accomplished in order to present the investigation of the main processes (fission, spallation and (multi)fragmentation) in intermediate- and high-energy ranges of the incident particle. The set of experimental data, presented in this work, encompasses not merely the data as total production cross sections. Notwithstanding, it further covers other data, as individual yields/cross sections, charge, mass and spin distributions of the reaction fragments, as well as kinematic features. These sources of experimental data can serve as a consistent set of benchmarking data, still necessary for the study of heavy nuclei. Besides, it is also useful for technological applications, from astrophysics and environmental sciences to accelerator technology and accelerator-based nuclear waste transmutation and energy amplification as well.

Keywords

Excitation Energy 237Np Isomer Ratio Total Reaction Cross Section Primary Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Gonnenwein, The Nuclear Fission Process, edited by C. Wagemans (CRC Press, Boca Raton, USA, 1991) pp. 287--473.Google Scholar
  2. 2.
    A. Turkevich, J.B. Niday, Phys. Rev. 84, 52 (1951).CrossRefADSGoogle Scholar
  3. 3.
    V.V. Pashkevich, Nucl. Phys. A 169, 275 (1971).CrossRefADSGoogle Scholar
  4. 4.
    U. Brosa et al., Phys. Rep. 197, 167 (1990).CrossRefADSGoogle Scholar
  5. 5.
    R. Serber, Phys. Rev. 72, 1114 (1947).CrossRefADSGoogle Scholar
  6. 6.
    M.C. Duijvestijn, A.J. Koning et al., Phys. Rev. C 59, 776 (1999).CrossRefADSGoogle Scholar
  7. 7.
    V.M. Maslov, Nucl. Phys. A 717, 3 (2003).CrossRefADSGoogle Scholar
  8. 8.
    Yu.E. Titarenko et al., Nucl. Instrum. Methods A 414, 73 (1999).CrossRefADSGoogle Scholar
  9. 9.
    T. Enqvist, P. Armbruster, J. Benlliure et al., Nucl. Phys. A 703, 435 (2002).CrossRefADSGoogle Scholar
  10. 10.
    S. Stoulos, W. Westmeier, R. Hashemi-Nezhad et al., Phys. Rev. C 85, 024612 (2012).CrossRefADSGoogle Scholar
  11. 11.
    F. Rejmund, B. Mustapha, P. Armbruster et al., Nucl. Phys. A 683, 540 (2001).CrossRefADSGoogle Scholar
  12. 12.
    R. Michel, R. Bodemann, H. Busemann et al., Nucl. Instrum. Methods B 129, 153 (1997).CrossRefADSGoogle Scholar
  13. 13.
    K.-H. Schmidt et al., Nucl. Phys. A 665, 221 (2000).CrossRefADSGoogle Scholar
  14. 14.
    R.B. Firestone, in Tables of Isotopes, 8th edition, edited by S.Y. Frank Chu, C.M. Baglin (Wiley Interscience, New York, 1996) 1998 Update (with CD ROM).Google Scholar
  15. 15.
    R. Michel, D. Hansmann, S. Neumann et al., Nucl. Instrum. Methods B 343, 30 (2015).CrossRefADSGoogle Scholar
  16. 16.
    H. Baba, J. Sanada, H. Araki et al., Nucl. Instrum. Methods A 416, 301 (1998).CrossRefADSGoogle Scholar
  17. 17.
    G.S. Karapetyan, Sci. Lett. YSU 211, 31 (2006).Google Scholar
  18. 18.
    W. Younes, J.A. Becker, L.A. Bernstein et al., AIP Conf. Proc. 610, 673 (2001).CrossRefADSGoogle Scholar
  19. 19.
    N.A. Demekhina, G.S. Karapetyan, Phys. At. Nucl. 71, 27 (2008).CrossRefGoogle Scholar
  20. 20.
    N.A. Demekhina, G.S. Karapetyan, Phys. At. Nucl. 73, 24 (2010).CrossRefGoogle Scholar
  21. 21.
    A. Deppman, G.S. Karapetyan, V. Guimaraes et al., Phys. Rev. C 91, 024620 (2015).CrossRefADSGoogle Scholar
  22. 22.
    H. Kudo, M. Maruyama, M. Tanikawa et al., Phys. Rev. C 57, 178 (1998).CrossRefADSGoogle Scholar
  23. 23.
    M. Strecker, R. Wien, P. Plischke, W. Scobel, Phys. Rev. C 41, 2172 (1990).CrossRefADSGoogle Scholar
  24. 24.
    Yu. Gangrsky, B. Markov, B. Perelygin, Registration and Spectrometry of Fission Fragments (Moscow, 1992) Energoatomizdat.Google Scholar
  25. 25.
    C. Chung, J. Hogan, Phys. Rev. C 24, 180 (1981).CrossRefADSGoogle Scholar
  26. 26.
    C. Chung, J. Hogan, Phys. Rev. C 25, 899 (1982).CrossRefADSGoogle Scholar
  27. 27.
    G.S. Karapetyan, A.R. Balabekyan, N.A. Demekhina et al., Phys. At. Nucl. 72, 911 (2009).CrossRefGoogle Scholar
  28. 28.
    A.R. Balabekyan, G.S. Karapetyan, N.A. Demekhina et al., Phys. At. Nucl. 71, 1 (2010).Google Scholar
  29. 29.
    V.S. Barashenkov, F.G. Gereghi, A.S. Iljinov et al., Nucl. Phys. A 231, 462 (1974).CrossRefADSGoogle Scholar
  30. 30.
    T. Fukahori, O. Iwamoto, S. Chiba, in Proceedings of the Seventh International Conference on Nuclear Criticality Safety, ICNC2003, JAERI-conf, 2003-019 (pts. 1-2), edited by Nihon Genshiryoku Kenkyuujo, Nihon Genshiryoku Gakkai (Japan Atomic Energy Research Institute, Tokai-mura, Japan, 2003) p. 144.Google Scholar
  31. 31.
    E. Jacobs et al., Phys. Rev. C 19, 422 (1979).CrossRefADSGoogle Scholar
  32. 32.
    A. Deppman, E. Andrade-II, V. Guimaraes, G.S. Karapetyan, N.A. Demekhina, Phys. Rev. C 87, 054604 (2013).CrossRefADSGoogle Scholar
  33. 33.
    A. Deppman, E. Andrade-II, V. Guimaraes, G.S. Karapetyan et al., Phys. Rev. C 88, 024608 (2013).CrossRefADSGoogle Scholar
  34. 34.
    A. Deppman, E. Andrade-II, V. Guimaraes, G.S. Karapetyan et al., Phys. Rev. C 88, 064609 (2013).CrossRefADSGoogle Scholar
  35. 35.
    A. Deppman, S.B. Duarte, G. Silva et al., J. Phys. G: Nucl. Part. Phys. 30, 1991 (2004).CrossRefADSGoogle Scholar
  36. 36.
    A. Deppman et al., Phys. Rev. Lett. 87, 182701 (2001).CrossRefADSGoogle Scholar
  37. 37.
    A. Deppman et al., Nucl. Instrum. Methods Phys. Res. B 211, 15 (2003).CrossRefADSGoogle Scholar
  38. 38.
    A. Deppman et al., Comp. Phys. Comm. 145, 385 (2002).CrossRefADSMATHGoogle Scholar
  39. 39.
    S. Anefalos Pereira, A. Deppman, G. Silva, J.R. Maiorino et al., Nucl. Sci. Eng. 159, 102 (2008).Google Scholar
  40. 40.
    S. Anefalos, A. Deppman, G. Silva et al., Braz. J. Phys. 35, 912 (2005).CrossRefADSGoogle Scholar
  41. 41.
    S. Anefalos, A. Deppman, J.D.T. Arruda-Neto et al., AIP Conf. Proc. 769, 1299 (2004).CrossRefADSGoogle Scholar
  42. 42.
    S.T. Mongelli, J.R. Maiorino, S. Anefalos et al., Braz. J. Phys. 35, 894 (2005).CrossRefADSGoogle Scholar
  43. 43.
    T. Kodama, S.B. Duarte, K.C. Chung, R.A.M.S. Nazareth, Phys. Rev. Lett. 49, 536 (1982).CrossRefADSGoogle Scholar
  44. 44.
    M. Goncalves, S. de Pina, D.A. Lima et al., Phys. Lett. B 406, 1 (1997).CrossRefADSGoogle Scholar
  45. 45.
    B.D. Serot, J.D. Walecka, in Advances in Nuclear Physics, edited by J.W. Negele, E. Vogt, Vol. 16 (Plenum Press, New York, USA, 1986) p. 1.Google Scholar
  46. 46.
    I. Dostrovsky, P. Rabinowitz, R. Bivins, Phys. Rev. 111, 1659 (1958).CrossRefADSGoogle Scholar
  47. 47.
    M.V. Ricciardi, P. Armbruster, J. Benlliure et al., Phys. Rev. C 73, 014607 (2006).CrossRefADSGoogle Scholar
  48. 48.
    W. Loveland et al., Phys. Rev. C 24, 464 (1981).CrossRefADSGoogle Scholar
  49. 49.
    Y. Yariv, Z. Fraenkel, Phys. Rev. C 20, 2227 (1979).CrossRefADSGoogle Scholar
  50. 50.
    A.A. Kotov, L.N. Andronenko, M.N. Andronenko et al., Nucl. Phys. A 583, 575 (1995).CrossRefADSGoogle Scholar
  51. 51.
    V.A. Rubchenya, Phys. Rev. C 75, 054601 (2007).CrossRefADSGoogle Scholar
  52. 52.
    I.N. Vishnevskii et al., Izv. Akad. Nauk, Se. Fiz. 69, 658 (2005).Google Scholar
  53. 53.
    M. Tanikawa, H. Kudo, H. Sunaoshi et al., Z. Phys. A 347, 53 (1993).CrossRefADSGoogle Scholar
  54. 54.
    R. Vanska, R. Rieppo, Nucl. Instrum. Methods 179, 525 (1981).CrossRefADSGoogle Scholar
  55. 55.
    D. Kolev, E. Dobreva, N. Nenov, V. Todorov, Nucl. Instrum. Methods 356, 390 (1995).CrossRefADSGoogle Scholar
  56. 56.
    J.R. Huizenga, R. Vandenbosch, Phys. Rev. 120, 1305 (1960).CrossRefADSGoogle Scholar
  57. 57.
    J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952.Google Scholar
  58. 58.
    H.K. Vonach, R. Vandenbosch, J.R. Huizenga, Nucl. Phys. 60, 70 (1964).CrossRefGoogle Scholar
  59. 59.
    D.C. Aumann et al., Phys. Rev. C 16, 254 (1977).CrossRefADSGoogle Scholar
  60. 60.
    N.A. Demekhina, G.S. Karapetyan, J. Contemp. Phys. 42, 215 (2007).CrossRefGoogle Scholar
  61. 61.
    D. De Frenne, B. Proot, H. Thierens et al., Phys. Rev. C 29, 1777 (1984).CrossRefADSGoogle Scholar
  62. 62.
    G.B. Saha, I. Tomita, L. Yaffe, J. Inorg. Nucl. Chem. 31, 3731 (1969).CrossRefGoogle Scholar
  63. 63.
    C.L. Rao, G.B. Saha, L. Yaffe, J. Inorg. Nucl. Chem. 34, 2397 (1972).CrossRefGoogle Scholar
  64. 64.
    C. Rudy, R. Vandenbosch, C.T. Ratcliffe, J. Inorg. Nucl. Chem. 30, 365 (1967).CrossRefGoogle Scholar
  65. 65.
    B.L. Zhuikov, M.V. Mebel, V.M. Kokhanyuk, A.S. Iljinov, Phys. Rev. C 68, 054611 (2003).CrossRefADSGoogle Scholar
  66. 66.
    I.N. Vishnevskii et al., Yad. Fiz. 61, 1562 (1998).Google Scholar
  67. 67.
    N. Patronis, C.T. Papadopoulos, S. Galanopoulos et al., Phys. Rev. C 75, 034607 (2007).CrossRefADSGoogle Scholar
  68. 68.
    H. Warhanek, R. Vandenbosch, J. Inorg. Nucl. Chem. 30, 669 (1964).CrossRefGoogle Scholar
  69. 69.
    A.S. Iljinov, M.V. Mebel, C. Guaraldo et al., Phys. Rev. C 39, 1420 (1989).CrossRefADSGoogle Scholar
  70. 70.
    S. Cohen, F. Plasil, W.J. Swiatecki, Ann. Phys. (N.Y.) 82, 557 (1974).CrossRefADSGoogle Scholar
  71. 71.
    A.J. Sierk et al., Phys. Rev. C 33, 2039 (1986).CrossRefADSGoogle Scholar
  72. 72.
    J. Wilczynski, Nucl. Phys. A 216, 386 (1973).CrossRefADSGoogle Scholar
  73. 73.
    O.A. Capurro, D.E. DiGregorio, S. Gil et al., Phys. Rev. C 55, 766 (1997).CrossRefADSGoogle Scholar
  74. 74.
    M.G. Mustafa, K. Kumar, Phys. Rev. C 12, 1638 (1975).CrossRefADSGoogle Scholar
  75. 75.
    J.M. Alexander, Nuclear Chemistry, edited by L. Yaffe, Vol. I (Academic, New York, 1968) p. 273.Google Scholar
  76. 76.
    L. Winsberg, Phys. Rev. C 22, 2116 (1980) and 22.CrossRefADSGoogle Scholar
  77. 77.
    L.C. Northcliffe, R.E. Schilling, Nucl. Data, Sect. A 7, 233 (1970).CrossRefADSGoogle Scholar
  78. 78.
    M. Lagarde-Simonoff, G.N. Simonoff, Phys. Rev. C 20, 1498 (1979).CrossRefADSGoogle Scholar
  79. 79.
    N.A. Demekhina, G.S. Karapetyan, V. Guimaraes, Eur. Phys. J. Plus 128, 28 (2013).CrossRefGoogle Scholar
  80. 80.
    N.A. Demekhina, G.S. Karapetyan, S.M. Lukyanov, Yu. Penionjkevich, Phys. At. Nucl. 68, 23 (2005).CrossRefGoogle Scholar
  81. 81.
    A.V. Prokofiev, Nucl. Instrum. Methods A 463, 557 (2001).CrossRefADSGoogle Scholar
  82. 82.
    M. Blann, F. Plasil, Phys. Rev. Lett. 29, 303 (1972).CrossRefADSGoogle Scholar
  83. 83.
    A.R. Balabekyan, N.A. Demekhina, G.S. Karapetyan et al., Phys. Rev. C 90, 054612 (2014).CrossRefADSGoogle Scholar
  84. 84.
    A.R. Balabekyan, N.A. Demekhina, G.S. Karapetyan et al., Phys. Rev. C 89, 054604 (2014).CrossRefADSGoogle Scholar
  85. 85.
    J. Benlliure et al., Nucl. Phys. A 683, 513 (2001).CrossRefADSGoogle Scholar
  86. 86.
    J. Benlliure et al., Nucl. Phys. A 700, 469 (2002).CrossRefADSGoogle Scholar
  87. 87.
    S.B. Kaufman, E.P. Steinberg, Phys. Rev. C 22, 167 (1980).CrossRefADSGoogle Scholar
  88. 88.
    P. Bonche et al., Nucl. Phys. A 436, 265 (1985).CrossRefADSGoogle Scholar
  89. 89.
    E. Bonnet et al., Phys. Rev. Lett. 103, 072701 (2009).CrossRefADSGoogle Scholar
  90. 90.
    P. Napolitani, K.-H. Schmidt, L. Tassan-Got, J. Phys. G.: Nucl. Part. Phys. 38, 115006 (2011).CrossRefADSGoogle Scholar
  91. 91.
    H.H. Heckman, D.E. Greiner, P.J. Lindstrom, H. Shwe, Phys. Rev. C 17, 1735 (1978).CrossRefADSGoogle Scholar
  92. 92.
    D.J. Morrissey, W. Loveland, M. de Saint Simon, G.T. Seaborg, Phys. Rev. C 21, 1783 (1980).CrossRefADSGoogle Scholar
  93. 93.
    S.B. Kaufman, E.P. Steinberg, M.W. Weisfield, Phys. Rev. C 18, 1349 (1978).CrossRefADSGoogle Scholar
  94. 94.
    O. Scheidemann, N. Porile, Phys. Rev. C 14, 1534 (1976).CrossRefADSGoogle Scholar
  95. 95.
    P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995).CrossRefADSGoogle Scholar
  96. 96.
    M.G. Itkis et al., Z. Phys. A 320, 433 (1985).CrossRefADSGoogle Scholar
  97. 97.
    J.J. Kolata, V. Guimaraes, D. Peterson et al., Phys. Rev. Lett. 81, 4580 (1998).CrossRefADSGoogle Scholar
  98. 98.
    L.C. Chamon, M.S. Hussein, L.F. Canto, Braz. J. Phys. 37, 1177 (2007).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Instituto de FisicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations