Advertisement

Hydrogenation induced deviation of temperature and concentration dependences of polymer-solvent interactions in poly(vinyl chloride) and a new eco-friendly plasticizer

  • Yang Liu
  • Rongchun Zhang
  • Xiaoliang Wang
  • Pingchuan Sun
  • Wei Chen
  • Jianyi Shen
  • Gi Xue
Regular Article
  • 127 Downloads

Abstract

As a substitute for di-2-ethylhexyl phthalate (DOP), a new eco-friendly plasticizer, di(2-ethylhexyl) cyclohexane-1,2-dicarboxylate (DEHHP), was systematically studied in this work, mainly focusing on its interaction with poly(vinyl chloride) (PVC). The temperature and concentration dependences of polymer-solvent interactions in PVC/DEHHP were systematically investigated by rheology, low-field NMR and molecular dynamics simulations, and the results were quite different from those in PVC/DOP. With temperature increasing or PVC concentration decreasing, rheology experiments revealed that polymer-solvent interactions in PVC/DEHHP were weaker than that in PVC/DOP. Low-field 1H NMR results showed that the number of polymer-solvent complexes decreased as temperature increased. A faster decreasing rate of this number made the polymer-solvent interactions weaker in PVC/DEHHP than in PVC/DOP. Molecular dynamics simulations were further performed to study the role of polymer-solvent hydrogen bonding interactions in the systems. The radial distribution function showed that heating and dilution both resulted in faster molecular motions, and disassociation of the hydrogen bonds in the simplex hydrogen bonding system. Therefore, heating and dilution had an equivalent effect on the polymer-solvent interactions.

Keywords

Free Solvent Mobile Component Intermediate Component Critical Gelation Gelation Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Q. Sun, D.S. Zhou, X.L. Wang, G. Xue, Macromolecules 35, 7089 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    J.L. Chen, G. Xue, Y.H. Li, L. Wang, G.H. Tian, Macromolecules 34, 1297 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    P.D. Hong, H.T. Huang, European Polymer Journal 35, 2155 (1999).CrossRefGoogle Scholar
  4. 4.
    L. Li, Y. Aoki, Macromolecules 30, 7835 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    B.Sundaresan, A. Srinivasarao, Polym. Int. 33, 425 (1994).CrossRefGoogle Scholar
  6. 6.
    M.Bolke, M. Mollhoff, P. Hallpap, J.R. Lochmann, Colloid Polym. Sci. 269, 972 (1991).CrossRefGoogle Scholar
  7. 7.
    K.T. Nijenhuis, H.H. Winter, Macromolecules 22, 411 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    P.H. Mutin, J.M. Guenet, Macromolecules 22, 843 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Liu, R. Zhang, X. Wang, P. Sun, W. Chen, J. Shen, G. Xue, Polymer 55, 2831 (2014).CrossRefGoogle Scholar
  10. 10.
    S. Banerjee, R. Ghosh, B. Bagchi, J. Phys. Chem. B 116, 3713 (2012).CrossRefGoogle Scholar
  11. 11.
    S. Aparicio, R. Alcalde, J. Luis Trenzado, M.N. Caro, M. Atilhan, J. Phys. Chem. B 115, 8864 (2011).CrossRefGoogle Scholar
  12. 12.
    E.E. Dormidontova, Macromolecules 35, 987 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    O. Borodin, D. Bedrov, G.D. Smith, J. Phys. Chem. B 106, 5194 (2002).CrossRefGoogle Scholar
  14. 14.
    E.E. Fenn, D.E. Moilanen, N.E. Levinger, M.D. Fayer, J. Am. Chem. Soc. 131, 5530 (2009).CrossRefGoogle Scholar
  15. 15.
    C. Branca, S. Magazu, G. Maisano, P. Migliardo, E. Tettamanti, J. Mol. Struct. 481, 133 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    C. Branca, S. Magazu, G. Maisano, P. Migliardo, J. Phys. Chem. B 103, 1347 (1999).CrossRefGoogle Scholar
  17. 17.
    M. Mours, H.H. Winter, Macromolecules 29, 7221 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    A. Izuka, H.H. Winter, T. Hashimoto, Macromolecules 25, 2422 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    C. Schwittay, M. Mours, H.H. Winter, Faraday Discuss. 101, 93 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Aoki, L. Li, H. Uchida, M. Kakiuchi, H. Watanabe, Macromolecules 31, 7472 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Aoki, L. Li, M. Kakiuchi, Macromolecules 31, 8117 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    H. Reinecke, A. Saiani, C. Mijangos, J.M. Guenet, Macromolecules 29, 4799 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    M. Najeh, J.P. Munch, J.M. Guenet, Macromolecules 25, 7018 (1992).ADSCrossRefGoogle Scholar
  24. 24.
    M. Dahmani, M. Skouri, J.M. Guenet, J.P. Munch, Europhys. Lett. 26, 19 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    M. Dahmani, N. Fazel, J.P. Munch, J.M. Guenet, Macromolecules 30, 1463 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    H. Reinecke, C. Mijangos, A. Brulet, J.M. Guenet, Macromolecules 30, 959 (1997).ADSCrossRefGoogle Scholar
  27. 27.
    K. Saalwachter, M. Gottlieb, R.G. Liu, W. Oppermann, Macromolecules 40, 1555 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    P.D. Hong, C.M. Chou, Macromolecules 33, 9673 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    P.D. Hong, H.T. Huang, Polym. J. 32, 789 (2000).CrossRefGoogle Scholar
  30. 30.
    J. Zhao, M. Xue, Y. Huang, J. Shen, Catal. Commun. 16, 30 (2011).CrossRefGoogle Scholar
  31. 31.
    R. Zhang, T. Yan, B.-D. Lechner, K. Schröter, Y. Liang, B. Li, F. Furtado, P. Sun, K. Saalwächter, Macromolecules 46, 1841 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    Y. Gao, R. Zhang, W. Lv, Q. Liu, X. Wang, P. Sun, H.H. Winter, G. Xue, J. Phys. Chem. C 118, 5606 (2014).CrossRefGoogle Scholar
  33. 33.
    D. Stauffer, A. Coniglio, M. Adam, Adv. Polym. Sci. 44, 103 (1982).Google Scholar
  34. 34.
    Horst Henning Winter, Marian Mours, Adv. Polym. Sci. 134, 165 (1997).Google Scholar
  35. 35.
    K.W. McCreight, J.J. Ge, M.M. Guo, I. Mann, F.M. Li, Z. Shen, X.M. Jin, F.W. Harris, S.Z.D. Cheng, J. Polym. Sci. B Polym. Phys. 37, 1633 (1999).ADSCrossRefGoogle Scholar
  36. 36.
    J.J. Ge, M.M. Guo, Z.H. Zhang, P.S. Honigfort, I.K. Mann, S.Y. Wang, F.W. Harris, S.Z.D. Cheng, Macromolecules 33, 3983 (2000).ADSCrossRefGoogle Scholar
  37. 37.
    S.K. Hassun, S.H.F. Almadfai, M.M.F. Aljarrah, British Polym. J. 17, 330 (1985).CrossRefGoogle Scholar
  38. 38.
    E. Arunan, G.R. Desiraju, R.A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D.C. Clary, R.H. Crabtree, J.J. Dannenberg, P. Hobza, H.G. Kjaergaard, A.C. Legon, B. Mennucci, D.J. Nesbitt, Pure Appl. Chem. 83, 1637 (2011).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of High Performance Polymer Materials and Technology, Nanjing National Laboratory of Microstructures, Department of Polymer Science and Engineering, The School of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China
  2. 2.Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry and School of PhysicsNankai UniversityTianjinP. R. China
  3. 3.Laboratory of Mesoscopic Chemistry, The School of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China

Personalised recommendations