Skip to main content
Log in

Design and parameter optimization of a small-scale electron-based ADS for radioactive waste transmutation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper presents the design and feasibility of an electron-LINAC-based small-scale system (ADS) for nuclear waste transmutation. FLUKA simulations have been performed to evaluate the photoneutron yield in high-Z metallic targets such as silver, tungsten, lead, tantalum and uranium irradiated by electron beams of 20–200MeV. The parameters involved in the photoneutron production mechanism including electron beam energy, target material and target shape have been investigated in order to obtain maximum photoneutron production. The neutron reflectors of the ADS, in particular, beryllium, lead and beryllium oxide (BeO) with various thicknesses have been studied. The results show that a combination of an internal reflector of Pb with a thickness of 3cm and an external reflector of BeO with a thickness of 10cm improves the fluence rate. The photoneutron energy spectrum, photoneutron fluence distribution and heat deposition in the electron target have also been presented. At incident electron beam energy of 155MeV, a neutron source of ∼ 4.6 × 1010 (n/cm2/s/mA) has been achieved, which is highly applicable for using in nuclear waste transmutation. The designed ADS has the ability to transmute ∼ 1.5 × 1022 (atoms/y/mA). The obtained results are promising and could lead to the development of a small-scale ADS based on electron LINAC for radioactive waste transmutation and for numerous applications when employed as a photoneutron source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Bowman et al., Nucl. Instrum. Methods A 320, 336 (1992).

    Article  ADS  Google Scholar 

  2. C. Rubbia, Conceptual design of a fast neutron operated high power energy amplifier, Report CERN/AT/95-44 ET (1995).

  3. H. Nifenecker et al., Nucl. Instrum. Methods A 463, 428 (2001).

    Article  ADS  Google Scholar 

  4. H. Nifenecker, O. Meplan, S. David, Accelerator driven subcritical reactors (IOP Publishing, London, 2003).

  5. M. Pieraa et al., Energy Convers. Manag. 51, 1758 (2010).

    Article  Google Scholar 

  6. The Spallation Neutron Source official web site, http://neutrons.ornl.gov/.

  7. The European Spallation Source official web site, http://europeanspallationsource.se/.

  8. F. Maekawa et al., Nucl. Instrum. Methods A 620, 159 (2010).

    Article  ADS  Google Scholar 

  9. J. Wei et al., Nucl. Instrum. Methods A 600, 10 (2009).

    Article  ADS  Google Scholar 

  10. H. AÄbderrahim et al., Nucl. Phys. News 20, 24 (2010).

    Article  Google Scholar 

  11. J. Wei et al., Chin. Phys. C 33, 1033 (2009).

    Article  ADS  Google Scholar 

  12. S.S. Abalin, Conception of electron beam-driven subcritical molten salt ultimate safety reactor (AIP publishing, USA, 1995).

  13. D. Ridikas, W. Mittig, Nucl. Instrum. Methods A 418, 449 (1998).

    Article  ADS  Google Scholar 

  14. V.C. Petwal et al., Pramana: J. Phys. 68, 235 (2007).

    Article  ADS  Google Scholar 

  15. D. Ridikas, H. Safa, M.L. Giacri, Conceptual study of neutron irradiator driven by electron accelerator, 7th information exchange meeting on actinide and fission product, P&T (NEA/OCDE), Korea, 14 (2002).

  16. S.S. Kapoor, Pramana: J. Phys. 59, 941 (2002).

    Article  ADS  Google Scholar 

  17. Y. Liu, A study on the feasibility of electron-based accelerator driven systems for nuclear waste transmutation, PhD dissertation, North Carolina State University (2006).

  18. D. Beller, Overview of the AFCI reactor-accelerator coupling experiments (RACE) project, OECD/NEA 8th information exchange meeting on partitioning and transmutation, Las Vegas (2004).

  19. G. Knoll, Radiation Detection and Measurement (John Wiley Publications, USA, 2000).

  20. D.A. Gryaznykh et al., Nucl. Instrum. Methods A 448, 106 (2000).

    Article  ADS  Google Scholar 

  21. G. Loi et al., Phys. Med. Biol. 51, 695 (2006).

    Article  Google Scholar 

  22. F. Jallu, Nucl. Instrum. Methods B 155, 373 (1999).

    Article  ADS  Google Scholar 

  23. D.J.S. Findlay, Nucl. Instrum. Methods B 50, 314 (1990).

    Article  ADS  Google Scholar 

  24. Á. Brolly, P. Vértes, Acta Phys. Hung. A 19, 263 (2004).

    Article  Google Scholar 

  25. W.P. Swanson, Radiological safety aspects of the operation of electron linear accelerators, in Technical Report Series, No. 188 (IAEA, 1979).

  26. A. Ferrari, FLUKA: A Multi-Particle Transport Code, CERN-2005-10, INFN/TC-05/11, SLAC-R-773 (2005).

  27. A. Fasso et al., AIP Conf. Proc. 769, 1303 (2005).

    ADS  Google Scholar 

  28. Á. Brolly, P. Vértes, Ann. Nucl. Energy 31, 585 (2004).

    Article  Google Scholar 

  29. Á. Brolly, P. Vértes, Ann. Nucl. Energy 32, 417 (2005).

    Article  Google Scholar 

  30. S. Dawahra, K. Khattab, G. Saba, Prog. Nucl. Energy 81, 1 (2015).

    Article  Google Scholar 

  31. I. Kairat et al., Ann. Nucl. Energy 38, 2180 (2011).

    Article  Google Scholar 

  32. H. Ullmaier, F. Carsughi, Nucl. Instrum. Methods B 101, 406 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Feizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feizi, H., Ranjbar, A.H. Design and parameter optimization of a small-scale electron-based ADS for radioactive waste transmutation. Eur. Phys. J. Plus 130, 99 (2015). https://doi.org/10.1140/epjp/i2015-15099-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15099-y

Keywords

Navigation