On the integrability and quasi-periodic wave solutions of the Boussinesq equation in shallow water

Regular Article

Abstract

In this paper, the complete integrability of the Boussinesq equation in shallow water is systematically investigated. By using generalized Bell’s polynomials, its bilinear formalism, bilinear Bäcklund transformations, Lax pairs of the Boussinesq equation are constructed, respectively. By virtue of its Lax equations, we find its infinite conservation laws. All conserved densities and fluxes are obtained by lucid recursion formulas. Furthermore, based on multidimensional Riemann theta functions, we construct periodic wave solutions of the Boussinesq equation. Finally, the relations between the periodic wave solutions and soliton solutions are strictly constructed. The asymptotic behaviors of the periodic waves are also analyzed by a limiting procedure.

References

  1. 1.
    E.T. Bell, Ann. Math. 35, 258 (1834).CrossRefGoogle Scholar
  2. 2.
    C. Gilson, F. Lambert, J.J.C. Nimmo, R. Willox, Proc. R. Soc. London A 452, 223 (1996).CrossRefADSMATHMathSciNetGoogle Scholar
  3. 3.
    F. Lambert, I. Loris, J. Springael, Inverse Probl. 17, 1067 (2001).CrossRefADSMATHMathSciNetGoogle Scholar
  4. 4.
    M.J. Ablowitz, P.A. Clarkson, Solitons.Google Scholar
  5. 5.
    G.W. Bluman, S. Kumei, Symmetries and Differential Equations, in Grad. Texts in Math, Vol. 81 (Springer-Verlag, New York, 1989).Google Scholar
  6. 6.
    V.B. Matveev, M.A. Salle, Darboux Transformation and Solitons (Springer, 1991).Google Scholar
  7. 7.
    R. Hirota, Direct Methods in Soliton Theory (Springer, 2004).Google Scholar
  8. 8.
    X.B. Hu, C.X. Li, J.J.C. Nimmo, G.F. Yu, J. Phys. A Math. Gen. 38, 195 (2005).CrossRefADSMATHMathSciNetGoogle Scholar
  9. 9.
    E. Belokolos, A. Bobenko, V. Enol’skij, A. Its, V. Matveev, Algebro-Geometrical Approach to Nonlinear Integrable Equations (Springer, 1994).Google Scholar
  10. 10.
    J. Weiss, M. Tabor, G. Carnevale, J. Math. Phys. 24, 522 (1983).CrossRefADSMATHMathSciNetGoogle Scholar
  11. 11.
    S.Y. Lou, Z. Naturforsch. 53a, 251 (1998).ADSGoogle Scholar
  12. 12.
    A. Nakamura, J. Phys. Soc. Jpn 47, 1701 (1979).CrossRefADSGoogle Scholar
  13. 13.
    A. Nakamura, J. Phys. Soc. Jpn 48, 1365 (1980).CrossRefADSGoogle Scholar
  14. 14.
    E.G. Fan, Y.C. Hon, Phys. Rev. E 78, 036607 (2008).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    E.G. Fan, Stud. Appl. Math. 127, 284 (2011).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    E.G. Fan, J. Phys. A Math. Theory 42, 095206 (2009).CrossRefADSGoogle Scholar
  17. 17.
    W.X. Ma, R.G. Zhou, Mod. Phys. Lett. A 24, 1677 (2009).CrossRefADSMATHMathSciNetGoogle Scholar
  18. 18.
    W.X. Ma, M. Chen, Appl. Math. Comput. 215, 2835 (2009).CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    K.W. Chow, J. Math. Phys. 36, 4125 (1995).CrossRefADSMATHMathSciNetGoogle Scholar
  20. 20.
    X.G. Geng, Y. Wu, C.W. Cao, J. Phys. A 32, 3733 (1999).CrossRefADSMATHMathSciNetGoogle Scholar
  21. 21.
    M. Eslami, M. Mirzazadeh, Eur. Phys. J. Plus 128, 140 (2013).CrossRefGoogle Scholar
  22. 22.
    M. Eslami, A. Neirameh, Eur. Phys. J. Plus 129, 54 (2014).CrossRefGoogle Scholar
  23. 23.
    A.M. Wazwaz, Appl. Math. Comput. 187, 1584 (2007).CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Y. Amadou, G. Betchewe, Douvagai, M. Justin, S.Y. Doka, K.T. Crepin, Eur. Phys. J. Plus 130, 13 (2015).CrossRefGoogle Scholar
  25. 25.
    E. Tala-Tebue, D.C. Tsobgni-Fozap, A. Kenfack-Jiotsa, T.C. Kofane, Eur. Phys. J. Plus 129, 136 (2014).CrossRefGoogle Scholar
  26. 26.
    Y. Chen, Q. Wang, Appl. Math. Comput. 167, 919 (2005).CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Z.Y. Yan, Appl. Math. Comput. 203, 106 (2008).CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    B. Tian, Y.T. Gao, Eur. Phys. J. B 22, 351 (2001).CrossRefADSGoogle Scholar
  29. 29.
    Y. Zhang, D.Y. Chen, Chaos, Solitons Fractals 23, 175 (2005).CrossRefADSMATHGoogle Scholar
  30. 30.
    S.F. Tian, H.Q. Zhang, J. Math. Anal. Appl. 371, 585 (2010).CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    S.F. Tian, H.Q. Zhang, Chaos, Solitons Fractals 47, 27 (2013).CrossRefADSMATHGoogle Scholar
  32. 32.
    S.F. Tian, H.Q. Zhang, J. Phys. A: Math. Theor. 45, 055203 (2012).CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    S.F. Tian, H.Q. Zhang, Stud. Appl. Math. 132, 212 (2014).CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    P.A. Clarkson, M.D. Kruskal, J. Math. Phys. 30, 2201 (1989).CrossRefADSMATHMathSciNetGoogle Scholar
  35. 35.
    D. Levi, P. Winternitz, J. Phys. A: Math. Gen. 22, 2915 (1989).CrossRefADSMATHMathSciNetGoogle Scholar
  36. 36.
    V.E. Zakharov, Zh. Eksp. Teor. Fiz. 65, 219 (1973).Google Scholar
  37. 37.
    D.J. Kaup, Progr. Theor. Phys. 54, 396 (1975).CrossRefADSMATHMathSciNetGoogle Scholar
  38. 38.
    R. Hirota, J. Satsuma, Progr. Theor. Phys. 57, 797 (1977).CrossRefADSMATHMathSciNetGoogle Scholar
  39. 39.
    A.M. Wazwaz, Appl. Math. Comput. 192, 479 (2007).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Pan-Li Ma
    • 1
    • 2
  • Shou-Fu Tian
    • 1
    • 2
  • Jian-Min Tu
    • 1
    • 2
  • Mei-Juan Xu
    • 1
    • 2
  1. 1.Department of MathematicsChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.Center of Nonlinear EquationsChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations