A note on the Sagnac effect for matter beams

Regular Article

Abstract

We study the Sagnac effect for matter beams, in order to estimate the kinematic corrections to the basic formula, deriving from the position and the extent of the interferometer, and discuss the analogy with the Aharonov-Bohm effect. We show that the formula for the Sagnac time delay is the same for matter and light beams in arbitrary stationary space-times, provided that a suitable condition on the speed of the beams is fulfilled. Hence, the same results obtained for light beams apply to matter beams.

Keywords

Light Beam Rotation Rate Inertial Frame Rotating Frame Sagnac Effect 

References

  1. 1.
    M.L. Ruggiero, A. Tartaglia, Eur. Phys. J. Plus 129, 126 (2014).CrossRefGoogle Scholar
  2. 2.
    G. Sagnac, C.R. Acad. Sci. Paris 141, 1220 (1905).Google Scholar
  3. 3.
    G. Sagnac, C.R. Acad. Sci. Paris 157, 708 (1913) (the English translation can be found in Relativity in Rotating Frames.Google Scholar
  4. 4.
    F. Bosi et al., Phys. Rev. D 84, 122002 (2011).CrossRefADSGoogle Scholar
  5. 5.
    M. Allegrini et al., J. Phys.: Conf. Ser. 375, 062005 (2012).ADSGoogle Scholar
  6. 6.
    G. Rizzi, M.L. Ruggiero, Gen. Relativ. Gravit. 35, 2129 (2003).CrossRefADSMATHMathSciNetGoogle Scholar
  7. 7.
    G. Rizzi, M.L. Ruggiero, in Relativity in Rotating Frames, edited by G. Rizzi, M.L. Ruggiero, in the series Fundamental Theories of Physics, edited by A. Van der Merwe (Kluwer Academic Publishers, Dordrecht, 2003) chapt. 10.Google Scholar
  8. 8.
    G.C. Scorgie, J. Phys. A: Math. Gen. 26, 3291 (1993).CrossRefADSGoogle Scholar
  9. 9.
    W. Rindler, V. Perlick, Gen. Relativ. Gravit. 22, 1067 (1990).CrossRefADSMATHMathSciNetGoogle Scholar
  10. 10.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Field (Pergamon Press, Oxford, 1971) see in particular sects. 84, 88.Google Scholar
  11. 11.
    J.E. Zimmermann, J.E. Mercerau, Phys. Rev. Lett. 14, 887 (1965).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    D.K. Atwood et al., Phys. Rev. Lett. 52, 1673 (1984).CrossRefADSGoogle Scholar
  13. 13.
    F. Riehle et al., Phys. Rev. Lett. 67, 177 (1991).CrossRefADSGoogle Scholar
  14. 14.
    F. Hasselbach, M. Nicklaus, Phys. Rev. A 48, 143 (1993).CrossRefADSGoogle Scholar
  15. 15.
    S.A. Werner et al., Phys. Rev. Lett. 42, 1103 (1979).CrossRefADSGoogle Scholar
  16. 16.
    G. Rizzi, M.L. Ruggiero, A. Serafini, Found. Phys. 34, 1835 (2005).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    G. Rizzi, M.L. Ruggiero, Gen. Relativ. Gravit. 35, 1743 (2003).ADSMathSciNetGoogle Scholar
  18. 18.
    W.W. Chow et al., Rev. Mod. Phys. 57, 61 (1985).CrossRefADSGoogle Scholar
  19. 19.
    L. Stodolsky, Gen. Relativ. Gravit. 11, 391 (1979).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    G.C. Scorgie, J. Phys. A: Math. Gen. 26, 5181 (1993).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Politecnico di TorinoDISATTorinoItaly
  2. 2.Sezione di TorinoINFNTorinoItaly

Personalised recommendations