Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux

Regular Article


The present work is dedicated to analyze the flow and heat transport of ferrofluids along a flat plate subjected to uniform heat flux and slip velocity. A magnetic field is applied in the transverse direction to the plate. Moreover, three different kinds of magnetic nanoparticles (Fe3O4, CoFe2O4, Mn-ZnFe2O4 are incorporated within the base fluid. We have considered two different kinds of base fluids (kerosene and water) having poor thermal conductivity as compared to solid magnetic nanoparticles. Self-similar solutions are obtained and are compared with the available data for special cases. A simulation is performed for each ferrofluid mixture by considering the dominant effects of slip and uniform heat flux. It is found that the present results are in an excellent agreement with the existing literature. The variation of skin friction and heat transfer is also performed at the surface of the plate and then the better heat transfer and of each mixture is analyzed. Kerosene-based magnetite Fe3O4 provides the higher heat transfer rate at the wall as compared to the kerosene-based cobalt ferrite and Mn-Zn ferrite. It is also concluded that the primary effect of the magnetic field is to accelerate the dimensionless velocity and to reduce the dimensionless surface temperature as compared to the hydrodynamic case, thereby increasing the skin friction and the heat transfer rate of ferrofluids.


Heat Transfer Ferrite Nusselt Number Skin Friction Heat Transfer Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Magnetic field intensity


Electric conductivity


Specific heat [J/kg·K]


Friction coefficient


Dimensionless stream function


Thermal conductivity


Magnetic parameter


Local Nusselt number


Prandtl number of base fluid


Wall heat flux [W/m2]


Local fluid temperature [K]


Free stream temperature [K]


x-component of velocity [m/s]


Free stream velocity [m/s]


y-component of velocity [m/s]


Distance along the plate [m]


Distance normal to the plate [m]

Greek symbols


Thermal diffusivity [m2/s]


Slip parameter


Volume fraction of ferrofluid


Similarity variable


Absolute viscosity [N·s/m2]


Kinematic viscosity [m2/s]


Electric conductivity


Density [kg/m3]


Heat capacity [kg/m3·K]


Dimensionless temperature


Stream function





Base fluid


Solid ferroparticles


  1. 1.
    R. Rosensweig, Ferrohydrodynamics (Cambridge University Press, England, 1985).Google Scholar
  2. 2.
    E. Blums, Y. Mikhailov, R. Ozols, Heat and Mass Transfer in MHD Flows (World Scientific Press, New York, 1987).Google Scholar
  3. 3.
    A. Bejan, Convection Heat Transfer, 3rd edition (John Wiley, 2004).Google Scholar
  4. 4.
    W. Kays, M. Crawford, Convective Heat and Mass Transfer (McGraw Hill, 1980).Google Scholar
  5. 5.
    D. Srinivasacharya, N. Srinivasacharyulu, O. Odelu, Int. Commun. Heat Mass Transfer 36, 180 (2009).CrossRefGoogle Scholar
  6. 6.
    M.M. Rashidi, Hamed Shahmohamadi, Commun. Nonlinear Sci. Numer. Simulat. 14, 2999 (2009).CrossRefADSMATHGoogle Scholar
  7. 7.
    M.M. Rashidi, T. Hayat, E. Erfani, S.A. Mohimanian Pour, Awatif A. Hendi, Commun. Nonlinear Sci. Numer. Simulat. 16, 4303 (2011).CrossRefADSMATHMathSciNetGoogle Scholar
  8. 8.
    S. Nadeem, Rizwan Ul Haq, C. Lee, Sci. Iran. 19, 1550 (2012).CrossRefGoogle Scholar
  9. 9.
    S. Nadeem, Rizwan Ul Haq, Noreen Sher Akbar, Z.H. Khan, Alexandria Eng. J. 52, 577 (2013).CrossRefGoogle Scholar
  10. 10.
    U. Khan, N. Ahmed, S.I. Khan, Z.A. Zaidi, Y. Xiao-Jun, S.T. Mohyud-Din, Alexandria Eng. J. 53, 463 (2014).CrossRefGoogle Scholar
  11. 11.
    U. Khan, N. Ahmed, Z.A. Zaidi, M. Asadullah, S.T. Mohyud-Din, Ain Shams Eng. J. 5, 187 (2014).CrossRefGoogle Scholar
  12. 12.
    S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Developments and Applications of Non-Newtonian Flows, Vol. 231 (1995) pp. 99--105.Google Scholar
  13. 13.
    S. Maiga, C. Nguyen, N. Galanis, G. Roy, Superlattices Microstruct. 35, 543 (2004).CrossRefADSGoogle Scholar
  14. 14.
    V. Trisaksri, S. Wongwises, Renew. Sustain. Energy Rev. 11, 512 (2007).CrossRefGoogle Scholar
  15. 15.
    S. Ahmad, A. Rohni, I. Pop, Acta Mech. 218, 195 (2011).CrossRefMATHGoogle Scholar
  16. 16.
    J. Buongiorno, J. Heat Transfer 128, 240 (2006).CrossRefGoogle Scholar
  17. 17.
    S. Kakac, A. Pramuanjaroenkij, Int. Journal Heat Mass Transfer 52, 3187 (2009).CrossRefMATHGoogle Scholar
  18. 18.
    X.-Q. Wang, A. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007).CrossRefMATHGoogle Scholar
  19. 19.
    N.F.M. Noor, S. Awang Kechil, I. Hashim, Commun. Nonlinear Sci. Numer. Simulat. 15, 144 (2010).CrossRefADSMATHGoogle Scholar
  20. 20.
    N.F.M. Noor, O. Abdulaziz, I. Hashim, Int. J. Numer. Methods Fluids 63, 357 (2010).CrossRefADSMATHMathSciNetGoogle Scholar
  21. 21.
    N.F.M. Noor, S. Abbasbandy, I. Hashim, Int. J. Heat Mass Transfer 55, 2122 (2012).CrossRefGoogle Scholar
  22. 22.
    Rizwan Ul Haq, S. Nadeem, Z.H. Khan, N.F.M. Noor, Physica B: Condens. Matter 457, 40 (2015).CrossRefADSGoogle Scholar
  23. 23.
    S. Nadeem, Rizwan Ul Haq, N.S. Akbar, Z.H. Khan, Alexandria Eng. J. 52, 577 (2013).CrossRefGoogle Scholar
  24. 24.
    Rizwan Ul Haq, S. Nadeem, Z.H. Khan, Noreen Sher Akbar, Physica E: Low-dimensional Syst. Nanostruct. 65, 17 (2015).CrossRefADSGoogle Scholar
  25. 25.
    S. Nadeem, Rizwan Ul Haq, J. Aerospace Eng. 28, 04014061 (2015).CrossRefGoogle Scholar
  26. 26.
    S. Nadeem, Rizwan Ul Haq, N.S Akbar, C. Lee, Z.H. Khan, Plos One 8, e69811 (2013).CrossRefADSGoogle Scholar
  27. 27.
    K. Cao, J. Baker, Int. J. Heat Mass Transfer 52, 3829 (2009).CrossRefMATHGoogle Scholar
  28. 28.
    Y. Xuan, M. Ye, Q. Li, Int. J. Heat Mass Transfer 48, 2443 (2005).CrossRefMATHGoogle Scholar
  29. 29.
    T. Strek, H. Jopek, Phys. Status Solidi (B) 244, 1027 (2007).CrossRefADSGoogle Scholar
  30. 30.
    A. Jafari, T. Tynjälä, S. Mousavi, P. Sarkomaa, Int. J. Heat Fluid Flow 29, 1197 (2008).CrossRefGoogle Scholar
  31. 31.
    C. Scherer, A. Neto, Braz. J. Phys. 35, 718 (2005).CrossRefADSGoogle Scholar
  32. 32.
    J. Popplewell, Phys. Technol. 15, 150 (1984).CrossRefADSGoogle Scholar
  33. 33.
    K. Raj, R. Moskowitz, J. Magn. & Magn. Mater. 85, 233 (1984).CrossRefADSGoogle Scholar
  34. 34.
    Q.A. Pankhurst, J. Connolly, S. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003).CrossRefADSGoogle Scholar
  35. 35.
    R. Tiwari, M. Das, Int. J. Heat Mass Transfer 50, 2002 (2007).CrossRefMATHGoogle Scholar
  36. 36.
    V. Kuncser, G. Schinteie, B. Sahoo, W. Keune, D. Bica, L. Vekas, G. Filoti, J. Phys.: Condens. Matter 19, 1 (2007).Google Scholar
  37. 37.
    C. Tangthieng, B. Finlayson, J. Maulbetsch, T. Cader, J. Magn. & Magn. Mater. 201, 252 (1999).CrossRefADSGoogle Scholar
  38. 38.
    M. Li, H. Shi, L. Zhu, Proc. Eng. 31, 166 (2012).CrossRefGoogle Scholar
  39. 39.
    S. Aniss, M. Belhaq, M. Souhar, J. Heat Transfer 123, 428 (2001).CrossRefGoogle Scholar
  40. 40.
    B. Finlayson, J. Fluid Mech. 40, 753 (1970).CrossRefADSMATHGoogle Scholar
  41. 41.
    P. Kaloni, J. Lou, Phys. Rev. E 70, 026313 (2004).CrossRefADSGoogle Scholar
  42. 42.
    T. Na, Computational Methods in Engineering Boundary Value Problem (Academic Press, 1979).Google Scholar
  43. 43.
    Seiyed E. Ghasemi, M. Hatami, D.D. Ganji, Case Stud. Therm. Eng. 4, 1 (2014).CrossRefGoogle Scholar
  44. 44.
    A. Malvandi, D.D. Ganji, J. Magn. & Magn. Mater. 369, 132 (2014).CrossRefADSGoogle Scholar
  45. 45.
    I. Rahimi Petroudi, D.D. Ganji, M. Khazayi Nejad, J. Rahimi, E. Rahimi, A. Rahimifar, Case Stud. Therm. Eng. 4, 193 (2014).CrossRefGoogle Scholar
  46. 46.
    R. Rosensweig, J. Magn. & Magn. Mater. 252, 370 (2002).CrossRefADSGoogle Scholar
  47. 47.
    H. Oztop, E. Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008).CrossRefGoogle Scholar
  48. 48.
    H. Blasius, Z. Math. Phys. 56, 1 (1908).Google Scholar
  49. 49.
    R. Cortell, Appl. Math. Comput. 170, 706 (2005).CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    M. Rahman, Meccanica 46, 1127 (2011).CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    M. Yazdi, S. Abdullah, I. Hashim, K. Sopian, Energies 4, 2273 (2011).CrossRefGoogle Scholar
  52. 52.
    B. Weidenfeller, M. Höfer, F. Schilling, Compos. Part A: Appl. Sci. Manuf. 33, 1041 (2002).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of Waterloo 200, University of West WaterlooOntarioCanada
  2. 2.School of Mathematical SciencesPeking UniversityBeijingP.R. China
  3. 3.Department of MathematicsUniversity of MalakandKhyber PakhtunkhwaPakistan
  4. 4.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations