Advertisement

Construction of the energy matrix for complex atoms Part III: Excitation of two equivalent electrons from a closed shell into an open shell or an empty shell

  • Magdalena Elantkowska
  • Jarosław Ruczkowski
  • Jerzy Dembczyński
Open Access
Regular Article

Abstract

The effects of the second-order configuration interaction perturbations on the energy-level structure of nl N , \(nl^N n_1 l_1^{N_1 }\) and \(nl^N n_1 l_1^{N_1 } n_2 l_2\) configurations have been studied. In the previous works (see Part I and II) we presented a method, which allows to analyse complex electronic systems composed of configurations including up to four open shells and the formulae for the first-order electrostatic interaction between sophisticated configurations. In the present paper we consider two-electron core excitations for and between the configurations under study. They constitute the basis for the design of an efficient computer program package allowing large-scale calculations providing accurate wave functions.

Keywords

Matrix Element Phase Factor Closed Shell Virtual State Open Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Elantkowska, J. Ruczkowski, J. Dembczyński, Eur. Phys. J. Plus 130, 14 (2015) http://dx.doi.org/10.1140/epjp/i2015-15014-8.CrossRefGoogle Scholar
  2. 2.
    M. Elantkowska, J. Ruczkowski, J. Dembczyński, Eur. Phys. J. Plus 130, 15 (2015) http://dx.doi.org/10.1140/epjp/i2015-15015-7.CrossRefGoogle Scholar
  3. 3.
    L. Armstrong Jr., Theory of the Hyperfine Structure of Free Atoms (Willey-Interscience, New York, 1971).Google Scholar
  4. 4.
    I. Lindgren, J. Morrison, Atomic Many-Body Theory (Springer-Verlag, Berlin Heidelberg New York, 1982).Google Scholar
  5. 5.
    L. Armstrong Jr., S. Feneuille, Phys. Rev. 173, 58 (1968) http://dx.doi.org/10.1103/PhysRev.173.58.CrossRefADSGoogle Scholar
  6. 6.
    L. Armstrong Jr., S. Feneuille, Adv. At. Molec. Phys. 10, 1 (1974) http://dx.doi.org/10.1016/S0065-2199(08)60346-2.CrossRefADSGoogle Scholar
  7. 7.
    J. Dembczyński, G. Szawioła, M. Elantkowska, E. Stachowska, J. Ruczkowski, Phys. Scr. 54, 444 (1996) http://dx.doi.org/10.1088/0031-8949/54/5/004.CrossRefADSGoogle Scholar
  8. 8.
    M. Elantkowska, J. Ruczkowski, J. Dembczyński, Phys. Scr. 59, 49 (1999) http://dx.doi.org/10.1238/Physica.Regular.059a00049.CrossRefADSGoogle Scholar
  9. 9.
    K. Rajnak, B.G. Wybourne, Phys. Rev. 132, 280 (1963) http://dx.doi.org/10.1103/PhysRev.132.280.CrossRefADSGoogle Scholar
  10. 10.
    K. Rajnak, B.G. Wybourne, Phys. Rev. 134, 596 (1964) http://dx.doi.org/10.1103/PhysRev.134.A596.CrossRefADSGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    B.G. Wybourne, Spectroscopic properties of Rare Earths (Interscience, New York, 1965).Google Scholar
  21. 21.
  22. 22.
    W. Ertmer, U. Johann, J. Dembczyński, Z. Michalski, Z. Phys. D 2, 67 (1986) http://dx.doi.org/10.1007/BF01437244.CrossRefADSGoogle Scholar
  23. 23.
    R. Aydin et al., Z. Phys. D 15, 281 (1990) http://dx.doi.org/10.1007/BF01437170.CrossRefADSGoogle Scholar
  24. 24.
    J. Dembczyński, G.H. Guthoehrlein, E. Stachowska, Phys. Rev. A 48, 2752 (1993) http://dx.doi.org/10.1103/PhysRevA.48.2752.CrossRefADSGoogle Scholar
  25. 25.
    J. Dembczyński, M. Elantkowska, B. Furmann, J. Ruczkowski, D. Stefańska, J. Phys. B: At. Mol. Opt. Phys. 43, 065001 (2010) http://dx.doi.org/10.1088/0953-4075/43/6/065001.CrossRefADSGoogle Scholar
  26. 26.
    J. Dembczyński, M. Elantkowska, J. Ruczkowski, I.K. Öztürk, A. Er, F. Güzelçimen, Gö. Başar, S. Kröger, J. Phys. B: At. Mol. Opt. Phys. 48, 015006 (2015) http://dx.doi.org/10.1088/0953-4075/48/1/015006.CrossRefADSGoogle Scholar
  27. 27.
    B. Arcimowicz, J. Dembczyński, P. Głowacki, J. Ruczkowski, M. Elantkowska, G. Guthöhrlein, L. Windholz, Eur. Phys. J. ST 222, 2085 (2013) http://dx.doi.org/10.1140/epjst/e2013-01988-6.CrossRefGoogle Scholar
  28. 28.
    R.D. Cowan, The Theory of Atomic Structure and Spectra (Berkeley University of California Press, Berkeley, 1981).Google Scholar
  29. 29.
  30. 30.
    H.A. Jahn, J. Hope, Phys. Rev. 93, 318 (1954) http://dx.doi.org/10.1103/PhysRev.93.318.CrossRefADSMATHGoogle Scholar
  31. 31.
  32. 32.
    A.P. Yutsis, I.B. Levinson, V.V. Vanagas, Mathematical Apparatus of the Angular Momentum Theory (Vilnius 1960) English translation (Israel Program for Scientific Translations, Jerusalem 1962.Google Scholar
  33. 33.
    J. Ruczkowski, M. Elantkowska, J. Dembczyński, J. Quant. Spectrosc. Radiat. Transfer 145, 20 (2014) http://dx.doi.org/10.1016/j.jqsrt.2014.04.018.CrossRefADSGoogle Scholar
  34. 34.
    J. Ruczkowski, M. Elantkowska, J. Dembczyński, J. Quant. Spectrosc. Radiat. Transfer 149, 168 (2014) http://dx.doi.org/10.1016/j.jqsrt.2014.08.010.CrossRefADSGoogle Scholar
  35. 35.
    I.K. Öztürk, Gö. Başar, A. Er, F. Güzelçimen, Gü. Başar, S. Kröger, J. Phys. B: At. Mol. Opt. Phys. 48, 015005 (2015) http://dx.doi.org/10.1088/0953-4075/48/1/015005.CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Magdalena Elantkowska
    • 1
  • Jarosław Ruczkowski
    • 2
  • Jerzy Dembczyński
    • 2
  1. 1.Laboratory of Quantum Engineering and Metrology, Faculty of Technical PhysicsPoznań University of TechnologyPoznańPoland
  2. 2.Institute of Control and Information Engineering, Faculty of Electrical EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations