Effects of series and parallel resistances on the C-V characteristics of silicon-based metal oxide semiconductor (MOS) devices

Regular Article


This paper investigates the electrical behavior of the Al/SiO2/Si MOS structure. We have used the complex admittance method to develop an analytical model of total capacitance applied to our proposed equivalent circuit. The charge density, surface potential, semiconductor capacitance, flatband and threshold voltages have been determined by resolving the Poisson transport equations. This modeling is used to predict in particular the effects of frequency, parallel and series resistance on the capacitance-voltage characteristic. Results show that the variation of both frequency and parallel resistance causes strong dispersion of the C-V curves in the inversion regime. It also reveals that the series resistance influences the shape of C-V curves essentially in accumulation and inversion modes. A significant decrease of the accumulation capacitance is observed when R s increases in the range 200–50000 Ω. The degradation of the C-V magnitude is found to be more pronounced when the series resistance depends on the substrate doping density. When R s varies in the range 100 Ω–50 kΩ, it shows a decrease in the flatband voltage from −1.40 to −1.26 V and an increase in the threshold voltage negatively from −0.28 to −0.74 V, respectively. Good agreement has been observed between simulated and measured C-V curves obtained at high frequency. This study is necessary to control the adverse effects that disrupt the operation of the MOS structure in different regimes and optimizes the efficiency of such electronic device before manufacturing.


Series Resistance Minority Carrier Metal Oxide Semiconductor Accumulation Capacitance Doping Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Chakraborty, D. Misra, Int. J. Sci. Res. Publ. 3, 1 (2013).Google Scholar
  2. 2.
    Yu.A. Chaplygin, E.A. Artamonova, A.Yu. Krasyukov, TYu. Krupkina, Semiconductors 42, 1522 (2008).CrossRefADSGoogle Scholar
  3. 3.
    F.M. d'Heurle, M.O. Aboelfotoh, F. Pesavento, C.S. Petersson, Appl. Surf. Sci. 53, 237 (1991).CrossRefADSGoogle Scholar
  4. 4.
    E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Willey Interscience Publication, USA, 1982).Google Scholar
  5. 5.
    U. Kelberlau, R. Kassinc, Solid-State Electronic 37, 22 (1978).Google Scholar
  6. 6.
    J.R. Hauser, K. Ahmed, AIP Conf. Proc. 235, 449 (1998).Google Scholar
  7. 7.
    C.C. Cheng, C.H. Chien, G.L. Luo, J.C. Liu, Y.C. Chen, Y.F. Chang, S.Y. Wang, C.C. Kei, C.N. Hsiao, C.Y. Chang, J. Vacuum Sci. Technol. B 27, 130 (2009).CrossRefADSGoogle Scholar
  8. 8.
    J.A. Luna-Lopez, M. Aceves-Mijares, O. Malik, R. Glanzer, INAOE Rev. Mexicana Fis. 45, 52 (2005).Google Scholar
  9. 9.
    J.A. Luna-López, M. Aceves-Mijares, O. Malik, Soc. Mexicana Ciencia Superficies Vacío 17, 1 (2004).Google Scholar
  10. 10.
    P. Fernández-Martínez, F.R. Palomo, S. Hidalgo, C. Fleta, F. Campabadal, D. Flores, Nucl. Instrum. Methods Phys. Res. A 5, 108 (2013).Google Scholar
  11. 11.
    B. Rong, L.K. Nanver, J.N. Burghartz, A.B.M. Jansman, A.G.R. Evans, B.S. Rejaeia, C-V characterization of MOS capacitors on high resistivity silicon substrate, in 33rd Conference on European Solid-State Device Research, ESSDERC'03 (IEEE, 2003) pp. 489--492, DOI:10.1109/ESSDERC.2003.1256920.
  12. 12.
    C.Y. Kim, H.S. Lee, J.K. Woo, C.K. Cho, R. Navamathavan, K.M. Lee, M.T. Hyun, J. Kor. Phys. Soc. 57, 1976 (2010).CrossRefGoogle Scholar
  13. 13.
    B. Tataroğlu, S. Altindal, A. Tataroğlu, Microelectron. Eng. 83, 2021 (2006).CrossRefGoogle Scholar
  14. 14.
    T.W. Collins, I.N. Churchill, IEEE Electron. Dev. 22, 90 (1975).CrossRefGoogle Scholar
  15. 15.
    Nicollian A. Goetzberger, Appl. Phys. Lett. 7, 216 (1965).CrossRefADSGoogle Scholar
  16. 16.
    H. Mathieu, Physique de Semi-Conducteurs et des Composantes Électroniques (Masson S.A., Paris, 1998).Google Scholar
  17. 17.
    F. Chen, N.P. Hoilien, S.A. Campbell, Microelectron. Eng. 72, 160 (2004).CrossRefGoogle Scholar
  18. 18.
    C.T. Sah, A.B. Tole, R.F. Pierret, Solid-State Electron. 12, 689 (1969).CrossRefADSGoogle Scholar
  19. 19.
    S.S. Ullah, M. Robinson, J. Hoey, M.S. Driver, A. Caruso, D.L. Schulz, Semicond. Sci. Technol. 27, 065012 (2012).CrossRefADSGoogle Scholar
  20. 20.
    A. Tataroğlu, S. Altindal, M.M. Bülbül, Microelectron. Eng. 81, 140 (2005).CrossRefGoogle Scholar
  21. 21.
    W.K. Henson, K.Z. Ahmed, E.M. Vogel, J.R. Hauser, J.J. Wortman, R.D. Venables, M. Xu, D. Venables, IEEE Electron. Dev. Lett. 20, 179 (1999).CrossRefADSGoogle Scholar
  22. 22.
    A.S. Grove, B.E. Deal, E.H. Snow, C.T. Sah, Solid-State Electron. 8, 145 (1965).CrossRefADSGoogle Scholar
  23. 23.
    R.T. Doria, R. Trevisol, M. de Souza, M.A. Pavanello, J. Integr. Circuits Syst. 7, 121 (2012).Google Scholar
  24. 24.
    S. Altindal, H. Kanbur, I. Yücedağ, A. Tataroğlu, Microelectron. Eng. 85, 149 (2008).CrossRefGoogle Scholar
  25. 25.
    M. Depas, R.L. Van Meirhaeghe, W.H. Laflere, F. Cardon, Solid-State Electron. 37, 433 (1994).CrossRefADSGoogle Scholar
  26. 26.
    K.J. Yang, C. Hu, IEEE Trans. Electron. Dev. 46, 1500 (1999).CrossRefADSGoogle Scholar
  27. 27.
    P.P. Altermatt, A. Schenk, B. Schmithüsen, G. Heiser, J. Appl. Phys. 100, 113715 (2006).CrossRefADSGoogle Scholar
  28. 28.
    S. Altindal, A. Tataroğlu, I. Dökme, Solar Energy Mater. Solar Cells 85, 345 (2005).CrossRefGoogle Scholar
  29. 29.
    S. Corosi, C. Plossu, S. Burignat, J. Mater. Sci.: Mater. Electron. 14, 311 (2003).Google Scholar
  30. 30.
    A. Srivastava, O. Mangla, R.K. Nahar, V. Gupta, C.K. Sarkar, J. Mater. Sci.: Mater. Electron. 25, 3257 (2014).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rejaiba Omar
    • 1
  • Ben Amar Mohamed
    • 2
  • Matoussi Adel
    • 1
  1. 1.Laboratory of Composite Ceramic and Polymer Materials (LaMaCoP)Sfax Faculty of ScienceSfaxTunisia
  2. 2.Departments of PhysicsFaculty of Sciences of SfaxSfaxTunisia

Personalised recommendations