Stacking faults and structural characterization of mechanically alloyed Ni50Cu10(Fe2B)10P30 powders

  • M. Slimi
  • M. Azabou
  • L. Escoda
  • J. J. Suñol
  • M. Khitouni
Regular Article


The nanocrystalline NiCu(Fe2B)P alloy was prepared by mechanically alloying of the elemental powders in a high-energy ball mill under argon atmosphere. The transformations occurring in the material during milling were studied by X-ray diffraction. Microstructure parameters, such as crystallite size, microstrains, stacking faults probability, and dislocations density were determined from the Rietveld refinement of the X-ray diffraction patterns. Scanning electron microscopy (SEM) was employed to examine the morphology of the samples as a function of milling times. On further milling (40h), a nanocrystalline matrix, where nanocrystalline Fcc-Ni(Cu, Fe, P), Fe2B and Bcc-Fe(B) phases were embedded, was obtained. The phase transformations are related to the increase of dislocation and accumulation of stacking faults. The nanostructure formation caused by mechanical alloying are commonly attributed to the generation and movement of dislocations.


Milling Crystallite Size Powder Particle Mechanical Alloy Nanocrystalline Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Suryanarayana, Prog. Mater Sci. 46, 1 (2001)CrossRefGoogle Scholar
  2. 2.
    K.H. Park, D. Mohapatra, B. Ramachandra Reddy et al., Hydrometallurgy 86, 164 (2007)CrossRefGoogle Scholar
  3. 3.
    V.K. Gouda, I.I. Selim, A.A. Khedr et al., Mater. Sci. Technol. 15, 208 (1999)Google Scholar
  4. 4.
    V.B. Singh, A. Gupta, J. Mater. Sci. 36, 1433 (2001)CrossRefADSGoogle Scholar
  5. 5.
    Y.V. Baldokhin, P.Y. Kolotyrkin, Y.I. Petrov, E.A. Shafranovsky, Phys. Lett. A 189, 137 (1994)CrossRefADSGoogle Scholar
  6. 6.
    R.H. Yu, L. Ren, S. Basu, K.M. Unruh, A. Parvizi-Majidi, J.Q. Xiao, J. Appl. Phys. 87, 5840 (1999)CrossRefADSGoogle Scholar
  7. 7.
    A. Djekoun, B. Bouzabata, S. Alleg, J.M. Greneche, A. Otmani, Ann. Chim. Sci. Mater. 23, 557 (1998)CrossRefGoogle Scholar
  8. 8.
    J.J. Sunol, A. Gonzalez, L. Escoda, J. Mater. Sci. 39, 5147 (2004)CrossRefADSGoogle Scholar
  9. 9.
    X.G. Li, A. Chiba, S. Takahashi, J. Magn. & Magn. Mater. 170, 339 (1997)CrossRefADSGoogle Scholar
  10. 10.
    C. Suryanarayana, Bull. Mater. Sci. 17, 307 (1994)CrossRefGoogle Scholar
  11. 11.
    C. Suryanarayana, C.C. Koch, Hyperfine Interact. 130, 5 (2000)CrossRefADSGoogle Scholar
  12. 12.
    K. Lu, Mater. Sci. Eng. Rep. R 16, 161 (1996)CrossRefGoogle Scholar
  13. 13.
    T. Ungar, A. Borbely, J. Appl. Phys. Lett. 69, 3173 (1996)CrossRefADSGoogle Scholar
  14. 14.
    M. Mhadhbi, M. Khitouni, L. Escoda, J.J. Sunol, Mater. Lett. 64, 1802 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Sort, J. Noguès, S. Suriñach, J.S. Muñoz, M.D. Barò, Mater. Sci. Eng. A 869, 375 (2004)Google Scholar
  16. 16.
    J.Y. Huang, Y.K. Wu, H.Q. Ye, K. Lu, NanoStruct. Mater. 6, 723 (1995)CrossRefGoogle Scholar
  17. 17.
    R.A. Young, The Rietveld Method, first edition (Oxford University Press, Oxford, 1996)Google Scholar
  18. 18.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  19. 19.
    L. Lutterotti, MAUD, CPD, Newsletter (IUCr), 24 (2000)Google Scholar
  20. 20.
    C. Aguilar, J. Marin, S. Ordonez, D. Celentano, F. Castro, V. Martinez, Rev. Metallurg. 42, 334 (2006)Google Scholar
  21. 21.
    J. Eckert, J.C. Holzer, W.L. Johnson, J. Appl. Phys. 73, 131 (1993)CrossRefADSGoogle Scholar
  22. 22.
    F.A. Mohamed, Acta Mater. 51, 4107 (2003)CrossRefGoogle Scholar
  23. 23.
    M. Mhadhbi, M. Khitouni, M. Azabou, A. Kolsi, J. Mater. Charact. 59, 944 (2008)CrossRefGoogle Scholar
  24. 24.
    D.L. Zhang, Prog. Mater. Sci. 49, 537 (2004)CrossRefGoogle Scholar
  25. 25.
    A.I. Salimon, A.M. Korsunsky, A.N. Ivanov, J. Mater. Sci. Eng. A 271, 196 (1999)CrossRefGoogle Scholar
  26. 26.
    E. Gaffet, G. Le Caër, in Mechanical Processing for Nanomaterials, Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa, Vol. 5 (American Scientific Publishers, 2004) pp. 91--129Google Scholar
  27. 27.
    M. Azabou, H. Ibn Gharsallah, L. Escoda, J.J. Suñol, A.W. Kolsi, M. Khitouni, Powder Technol. 224, 338 (2012)CrossRefGoogle Scholar
  28. 28.
    C.C. Koch, Nanostruct. Mater. 9, 13 (1997)CrossRefGoogle Scholar
  29. 29.
    H. Okumura, K.N. Ishihara, P.H. Shingu, H.S. Park, S. Nasu, J. Mater. Sci. 27, 153 (1992)CrossRefADSGoogle Scholar
  30. 30.
    Y. Yoshizawa, K. Yamauchi, Mater. Sci. Eng. A 133, 176 (1991)CrossRefGoogle Scholar
  31. 31.
    L. Dekhil, S. Alleg, J.J. Sunol, J.M. Grenèche, Adv. Powder Technol. 20, 593 (2009)CrossRefGoogle Scholar
  32. 32.
    S. Louidi, F.Z. Bentayeb, J.J. Suñol, L. Escoda, J. Alloys. Compd. 493, 110 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Louidi, F.Z. Bentayeb, W. Tebib, J.J. Suñol, L. Escoda, A.M. Mercier, Mater. Chem. Phys. 132, 761 (2012)CrossRefGoogle Scholar
  34. 34.
    Y.H. Zhao, H.W. Sheng, K. Lu, Acta Mater. 49, 365 (2001)CrossRefGoogle Scholar
  35. 35.
    M. Mhadhbi, M. Khitouni, L. Escoda, J.J. Suñol, J. Mater. Lett. 64, 1802 (2010)CrossRefGoogle Scholar
  36. 36.
    J.W. Christian, The Theory of Transformations in Metals and Alloys, third edition (Pergamon, Oxford, 2002)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Slimi
    • 1
  • M. Azabou
    • 1
  • L. Escoda
    • 2
  • J. J. Suñol
    • 2
  • M. Khitouni
    • 1
  1. 1.Laboratoire de Chimie Inorganique, Ur-11-ES-73Université de SfaxFSSTunisie
  2. 2.Dep. de FisicaUniversitat de GironaGironaSpain

Personalised recommendations