On supersymmetric Dirac-delta interactions

  • J. Mateos Guilarte
  • J. M. Muñoz Castañeda
  • A. Moreno Mosquera
Regular Article


In this paper we construct \(\mathcal{N} = 2\) supersymmetric (SUSY) quantum mechanics over several configurations of Dirac-δ potentials from one single delta to a Dirac “comb”. We show in detail how the building of supersymmetry on potentials with delta interactions placed in two or more points on the real line requires the inclusion of quasi-square wells. Therefore, the basic ingredient of a supersymmetric Hamiltonian containing two or more Dirac-δ’s is the singular potential formed by a Dirac-δ plus a step (θ) at the same point. In this δ/θ SUSY Hamiltonian there is only one singlet ground state of zero energy annihilated by the two supercharges or a doublet of ground states paired by supersymmetry of positive energy depending on the relation between the Dirac well strength and the height of the step potential. We find a scenario of either unbroken supersymmetry with Witten index one or supersymmetry breaking when there is one “bosonic” and one “fermionic” ground state such that the Witten index is zero. We explain next the different structure of the scattering waves produced by three δ/θ potentials with respect to the eigenfunctions arising in the non-SUSY case. In particular, many more bound states paired by supersymmetry exist within the supersymmetric framework compared with the non-SUSY problem. An infinite array of equally spaced δ-interactions of the same strength but alternatively attractive and repulsive are susceptible of being promoted to a \(\mathcal{N} = 2\) supersymmetric system. The Bloch’s theorem for wave functions in periodic potentials prompts a band spectrum also paired by supersymmetry. Self-isospectrality between the two partner Hamiltonians is thus found. Zero energy ground states are the non-propagating band lower edges, which exist in the spectra of both the two diagonal operators forming the SUSY Hamiltonian. We find that for the SUSY Dirac “comb” the naif Witten index is zero but supersymmetry is unbroken.


Zero Mode Singlet Ground State Fermionic Zero Mode Fermionic Sector Witten Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Exner, S. Albeverio. Solvable Models in Quantum Mechanics, in AMS Chelsea Publishing Series (AMS Chelsea Pub., 2005).Google Scholar
  2. 2.
    Michael Bordag, D. Hennig, D. Robaschik, J. Phys. A 25, 4483 (1992).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Elliott H. Lieb, Werner Liniger, Phys. Rev. 130, 1605 (1963).CrossRefADSMATHMathSciNetGoogle Scholar
  4. 4.
    Chen-Ning Yang, Phys. Rev. Lett. 19, 1312 (1967).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    J.M. Cerveró, A. Rodriguez, Eur. Phys. J. B 30, 239 (2002).CrossRefADSGoogle Scholar
  6. 6.
    R. de L. Kronig, W.G. Penney, Proc. R. Soc. London A 130, 499 (1931).CrossRefADSGoogle Scholar
  7. 7.
    J.S. Guillén, M.A. Braun. Física cuántica (Alianza Universidad Textos, Alianza, 1993).Google Scholar
  8. 8.
    M. Asorey, J.M. Munoz-Castaneda, Nucl. Phys. B 874, 852 (2013).CrossRefADSMATHMathSciNetGoogle Scholar
  9. 9.
    M. Asorey, J.M. Munoz-Castaneda, J. Phys. A 41, 304004 (2008).CrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Asorey, D. Garcia-Alvarez, J.M. Munoz-Castaneda, J. Phys. A 40, 6767 (2007).CrossRefADSMATHGoogle Scholar
  11. 11.
    Jose M. Munoz-Castaneda, J. Mateos Guilarte, A. Moreno Mosquera, Phys. Rev. D 87, 105020 (2013).CrossRefADSGoogle Scholar
  12. 12.
    M. Asorey, A. Ibort, G. Marmo, Int. J. Mod. Phys. A 20, 1001 (2005).CrossRefADSMATHMathSciNetGoogle Scholar
  13. 13.
    Edward Witten, Nucl. Phys. B 188, 513 (1981).CrossRefADSMATHGoogle Scholar
  14. 14.
    Andreas Wipf, Non-perturbative methods in supersymmetric theories, in Troisieme cycle de la Physique en Suisse Romande (2005).Google Scholar
  15. 15.
    A. Kirchberg, J.D. Lange, P.A.G. Pisani, A. Wipf, Ann. Phys. 303, 359 (2003).CrossRefADSMATHMathSciNetGoogle Scholar
  16. 16.
    L.J. Boya, Riv. Nuovo Cimento 31, 75 (2008).Google Scholar
  17. 17.
    L.J. Boya, Eur. J. Phys. 9, 139 (1988).CrossRefGoogle Scholar
  18. 18.
    L.J. Boya, H.C. Rosu, A.J. Seguí-Santonja, J. Socorro, F.J. Vila, J. Phys. A: Math. Gen. 31, 8835 (1998).CrossRefADSMATHGoogle Scholar
  19. 19.
    L.M. Nieto J.I. Díaz, J. Negro, O. Rosas-Ortiz, J. Phys. A: Math. Gen. 32, 8447 (1992).Google Scholar
  20. 20.
    F. Marques, O. Negrini, A.J. da Silva, J. Phys. A 45, 115307 (2012).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Francisco Correa, Luis-Miguel Nieto, Mikhail S. Plyushchay, Phys. Lett. B 659, 746 (2008).CrossRefADSMATHMathSciNetGoogle Scholar
  22. 22.
    Vit Jakubsky, Luis-Miguel Nieto, Mikhail S. Plyushchay, Phys. Lett. B 692, 51 (2010).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    A. Oeftiger, Supersymmetric quantum mechanics, Bachelor Thesis, University of Bern, Switzerland (2010).Google Scholar
  24. 24.
    Avinash Khare, Uday Sukhatme, J. Phys. A: Math. Gen. 37, 10037 (2004).CrossRefMATHGoogle Scholar
  25. 25.
    Avinash Khare, Uday Sukhatme, J. Math. Phys. 40, 5473 (1999).CrossRefADSMATHMathSciNetGoogle Scholar
  26. 26.
    Gerald V. Dunne, Joshua Feinberg, Phys. Rev. D 57, 1271 (1998).CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Gerald V. Dunne, Jake Mannix, Phys. Lett. B 428, 115 (1998).CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    David J. Fernández C, Javier Negro, Luis M. Nieto, Phys. Lett. A 275, 338 (2000).CrossRefADSMATHMathSciNetGoogle Scholar
  29. 29.
    M.V. Ioffe, J. Mateos Guilarte, P.A. Valinevich, Nucl. Phys. B 790, 414 (2008).CrossRefADSMATHMathSciNetGoogle Scholar
  30. 30.
    Fred Cooper, Avinash Khare, Uday Sukhatme, Phys. Rep. 251, 267 (1995).CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Fred Cooper, Barry Freedman, Ann. Phys. 146, 262 (1983).CrossRefADSGoogle Scholar
  32. 32.
    M. de Crombrugghe, V. Rittenberg, Ann. Phys. 151, 99 (1983).CrossRefADSGoogle Scholar
  33. 33.
    Fred Cooper, Joseph N. Ginocchio, Andreas Wipf, Phys. Lett. A 129, 145 (1988).CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Edward Witten, Nucl. Phys. B 202, 253 (1982).CrossRefADSGoogle Scholar
  35. 35.
    P.G.O. Freund, Introduction to Supersymmetry, in Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1988).Google Scholar
  36. 36.
    P. Forgacs, L. O’Raifeartaigh, A. Wipf, Nucl. Phys. B 293, 559 (1987).CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Guglielmo Fucci, Klaus Kirsten, Pedro Morales, Springer Proc. Phys. 137, 313 (2011).CrossRefGoogle Scholar
  38. 38.
    Guglielmo Fucci, Klaus Kirsten, Int. J. Mod. Phys. Conf. Ser. 14, 100 (2012).CrossRefGoogle Scholar
  39. 39.
    Klaus Kirsten, S.A. Fulling, Phys. Rev. D 79, 065019 (2009).CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Cengage Learning, 2011).Google Scholar
  41. 41.
    M.A. Gonzalez Leon, M. de la Torre Mayado, J. Mateos Guilarte, M.J. Senosiain, Contemp. Math. 563, 73 (2012).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. Mateos Guilarte
    • 1
  • J. M. Muñoz Castañeda
    • 2
  • A. Moreno Mosquera
    • 3
  1. 1.Departamento de Física Fundamental and IUFFyMUniversidad de SalamancaSalamancaSpain
  2. 2.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany
  3. 3.Facultad TecnológicaUniversidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations