Supersymmetry and coherent states for the displacement-operator-derived effective mass system

  • M. Vubangsi
  • M. Tchoffo
  • L. C. Fai
  • Yu. M. Pis’mak
Regular Article

Abstract.

Applying the supersymmetric quantum mechanics approach, we derive shape-invariant trigonometric potentials for the displacement-operator-derived effective mass Hamiltonian. By linearizing the algebra resulting from SUSY-QM factorization of the constructed systems, their coherent states are defined and shown to be exponentially dependent on a function of the quantum numbers.

Keywords

Harmonic Oscillator Coherent State Partner Potential Kinetic Energy Term Uncertainty Product 

References

  1. 1.
    C. Quesne, V.M. Tkachuk, J. Phys. A: Math. Gen. 37, 4267 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    L. Sierra, E. Lipparini, Europhys. Lett. 40, 667 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    F.S.A. Cavalcante, R.N. Costa Filho, J. Ribeiro Filho, C.A.S. De Almeida, C.N. Freire, Phys. Rev. B 55, 1326 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    M. Barranco, M. Pi, S.M. Gatica, E.S. Hernandez, J. Navarro, Phys. Rev. B 56, 8997 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    C. Quesne, B. Bagchi, A. Banerjee, V.M. Tkachuk, Bulg. J. Phys. 33, 308 (2006)MATHMathSciNetGoogle Scholar
  6. 6.
    G. Ovando, J. Morales, J.J. Pena, G. Ares De Parga, Open Appl. Math. J. 3, 29 (2009)CrossRefMathSciNetGoogle Scholar
  7. 7.
    A.R. Plastino, M. Casas, A. Plastino, Phys. Lett. A 281, 297 (2001)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    S. Cruz y Cruz, Trends Math. 2013, 229 (2013)Google Scholar
  9. 9.
    S.K. Moayedi, F. Abraham, M. Solimannejad, J. Mol. Struct. THEOCHEM 663, 15 (2003)CrossRefGoogle Scholar
  10. 10.
    H. Panahi, Z. Bakhshi, Acta Phys. Pol. B 41, 11 (2010)Google Scholar
  11. 11.
    A. de Souza Dutra, C.A.S. Almeida, Phys. Lett. A 275, 25 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    R.N. Costa Filho, M.P. Almeida, G.A. Farias, J.S. Andrade Jr., Phys. Rev. A 84, 050102 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    M. Vubangsi, M. Tchoffo, L.C. Fai, Phys. Scr. 89, 025101 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    M. Tchoffo, M. Vubangsi, L.C. Fai, Phys. Scr. 89, 105201 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    H. Weyl, Theory of Groups and Quantum Mechanics (Dover, New York, 1955)Google Scholar
  16. 16.
    W. Miller, Lie Theory and Special Functions (Academic, New York, 1968)Google Scholar
  17. 17.
    V. Milanovic, Z. Ikonic, J. Phys. A: Math. Gen. 32, 7001 (1999)ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    B. Roy, Europhys. Lett. 72, 1 (2005)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001)Google Scholar
  20. 20.
    B. Mielnik, O. Rosas-Ortiz, J. Phys. A: Math. Gen. 37, 10007 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    A.A. Andrianov, F. Cannata, J. Phys. A: Math. Gen. 37, 10297 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    S.H. Dong, Factorization Method in Quantum Mechanics (Springer, The Netherlands, 2007)Google Scholar
  23. 23.
    D.J. BenDaniel, C.B. Duke, Phys. Rev. B 125, 683 (1966)CrossRefGoogle Scholar
  24. 24.
    T.L. Li, K.J. Kuhn, Phys. Rev. B 47, 12760 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    T. Gora, F. Williams, Phys. Rev. B 30, 1179 (1969)CrossRefGoogle Scholar
  26. 26.
    M. Vubangsi, M. Tchoffo, L.C. Fai, Eur. Phys. J. Plus 129, 105 (2014)CrossRefGoogle Scholar
  27. 27.
    O. Mustafa, arXiv:1208.2109v2 [quant-ph]
  28. 28.
    A. de Souza Dutra, C.A.S. Almeida, Phys. Lett. A. 275, 25 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    O. Mustafa, S.H. Mazharimousavi, Phys. Lett. A. 373, 325 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    L. Gendenshtein, Piz. Zh. Eksp. Teor. Fiz. 38, 299 (1983) (JETP Lett. 38Google Scholar
  32. 32.
    K. Ramazan, T. Hayriye, Ann. Phys. (Leipzig) 12, 684 (2003)CrossRefMATHGoogle Scholar
  33. 33.
    R.J. Glauber, Phys. Rev. 131, 2766 (1963)ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    M. Novaes, M.A.M. de Aguiar, J.E.M. Hornos, J. Phys. A: Math. Gen. 36, 5773 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    J. Davidand, C. Fernandez, AIP Conf. Proc. 3, 1287 (2010)Google Scholar
  36. 36.
    Dusan Popov, J. Phys. A: Math. Gen. 34, 1 (2001)CrossRefGoogle Scholar
  37. 37.
    A.O. Barut, L. Girardello, Commun. Math. Phys. 21, 41 (1971)ADSCrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    C. Aragone, G. Guerri, S. Salamo, J.N. Tani, J. Phys. A: Math. Nucl. Gen. 7, L149 (1974)ADSCrossRefGoogle Scholar
  39. 39.
    A.M. Perelomov, Commun. Math. Phys. 26, 222 (1972)ADSCrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    J. David, C. Fernández, V. Hussin, J. Phys. A: Math. Gen. 32, 3603 (1999)CrossRefMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Vubangsi
    • 1
  • M. Tchoffo
    • 1
  • L. C. Fai
    • 1
  • Yu. M. Pis’mak
    • 2
  1. 1.Mesoscopic and Multilayer Structures LaboratoryUniversity of DschangDschangCameroon
  2. 2.Department of Theoretical PhysicsSaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations