Silver-doped cadmium oxide nanoparticles: Synthesis, structural and optical properties

  • A. Salem
Regular Article


This paper reports the synthesis and detailed characterization of silver (Ag)-doped cadmium oxide (Ag-CdO) nanoparticles which were prepared by the facile co-precipitation method. The prepared nanoparticles were characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and diffused reflectance spectroscopy (DRS). Further, the effect of various Ag-doping concentrations on the morphological, structural and optical properties of Ag-doped CdO nanoparticles were also examined and presented in this paper. The XRD results revealed that pure and Ag-doped CdO possess a face-centered cubic (FCC) crystal structure. Importantly, the band gap (Eg) of Ag-doped CdO nanoparticles was examined by diffused reflectance spectroscopy using the Kubelka-Munk method. The optical energy band gap values of Ag-doped CdO nanoparticles with various Ag doping concentrations, i.e. 0,1, 5, 10, 15, 20, 30%, were found to be 1.625, 1.64, 1.73, 1.89, 1.91, 1.93, 1.95 eV, respectively. Interestingly, it was seen that with increasing the Ag concentrations the band gap energies also increases. The present work demonstrates that Ag-doped CdO nanoparticles possess good optical properties and hence present themselves as a potential candidate for various high-technological electronic and optoelectronic devices.


Absorption Index Transparent Conducting Oxide Face Centered Cubic Prepared Nanoparticles Cadmium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.S. Ginley, C. Bright (Editors), Special Issue on Transparent Conducting Oxides, in MRS Bull, Vol. 25 (2000).Google Scholar
  2. 2.
    T.J. Coutts, T.O. Mason, J.D. Perkins, D.S. Ginley, Electrochem. Soc. Proc. 99-1, 274 (1999).Google Scholar
  3. 3.
    X. Wu, R.G. Dhere, D.S. Albin, T.A. Gessert, C. DeHart, J.C. Keane, A. Duda, T.J. Coutts, S. Asher, D.H. Levi, H.R. Moutinho, Y. Yan, T. Moriarty, S. Johnston, K. Emery, P. Sheldon, in Proceedings of the NCPV Program ReView Meeting.Google Scholar
  4. 4.
    K. Kawamura, M. Takahashi, M. Yagihara, T. Nakayama, European Patent Application, 2003, EP 1271561, A2 20030102, CAN 138:81680, AN (2003) 4983.Google Scholar
  5. 5.
    D.R. Kammler, T.O. Mason, D.L. Young, T.J. Coutts, D. Ko, K.R. Poeppelmeier, D.L. Williamson, J. Appl. Phys. 90, 5979 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    T.O. Mason, G.B. Gonzalez, D.R. Kammler, N. Mansourian-Hadavi, B.J. Ingram, Thin Solid Films 411, 106 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Babcock, A.C. Wang, A.W. Metz, N.L. Edleman, M.V. Metz, M.A. Lane, C.R. Kannewurf, T. Marks, J. Chem. Vap. Deposition 7, 239 (2001).CrossRefGoogle Scholar
  8. 8.
    A.C. Wang, J.R. Babcock, N.L. Edleman, A.W. Metz, M.A. Lane, R. Asahi, V.P. Dravid, C.R. Kannewurf, A.J. Freeman, T. Marks, J. Proc. Natl. Acad. Sci. U.S.A. 98, 7113 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    R. Asahi, A. Wang, J.R. Babcock, N.L. Edleman, A.W. Metz, M.A. Lane, V.P. Dravid, C.R. Kannewurf, A.J. Freeman, T.J. Marks, Thin Solid Films 411, 101 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    A.W. Metz, J.R. Ireland, J.G. Zheng, R.P.S.M. Lobo, Y. Yang, J. Ni, C.L. Stern, V.P. Dravid, N. Bontemps, C.R. Kannewurf, K.R. Poeppelmeier, T.J. Marks, J. Am. Chem. Soc. 126, 8477 (2004).CrossRefGoogle Scholar
  11. 11.
    S. Jin, Y. Yang, J.E. Medvedeva, J.R. Ireland, A.W. Metz, J. Ni, C.R. Kannewurf, A.R. Freeman, T.J. Marks, J. Am. Chem. Soc. 126, 13787 (2004).CrossRefGoogle Scholar
  12. 12.
    M. Yan, M. Lane, C.R. Kannewurf, R.P.H. Chang, Appl. Phys. Lett. 78, 2342 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Zhao, D.L. Morel, C.S. Ferekides, Thin Solid Films 413, 203 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Dou, R.G. Egdell, T. Walker, D.S.L. Law, G. Beamson, Surf. Sci. 398, 241 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Dakhel, Phys. Status Solidi (a) 205, 2704 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Curr. Appl. Phys. 9, 673 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    S. Shu, Y. Yang, J.E. Medvedova, J.R. Ireland, A.W. Metz, J. Ni, C.R. Kannewurf, A.J. Freeman, T.J. Tobin, J. Am. Chem. Soc. 126, 13787 (2004).CrossRefGoogle Scholar
  18. 18.
    A.A. Dakhel, Thin Solid Films 518, 1712 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    A.A. Dakhel, J. Alloys Compd. 475, 51 (2009).CrossRefGoogle Scholar
  20. 20.
    A.A. Dakhel, Solar Energy 83, 934 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Dakhel, J. Mater. Sci. 46, 6925 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    F. Yakuphanoglu, Solar Energy 85, 2704 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    L. Gao, Y. Zhang, J.-M. Zhang, K.-W. Xu, Appl. Surf. Sci. 257, 2498 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    J. Morales, L. Sanchez, Solid State Ionics 126, 219 (1999).CrossRefGoogle Scholar
  25. 25.
    K. Hanamoto, M. Sasaki, K. Miyatani, C. Kaito, H. Miki, Y. Nakayama, Nucl. Instrum. Methods Phys. Res. B 173, 287 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    X. Lou, X. Zhao, X. He, Solar Energy 83, 2103 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    E. Burstein, Phys. Rev. 93, 632 (1954).ADSCrossRefGoogle Scholar
  28. 28.
    R.A. Abram, G.J. Ress, B.L.H. Wilson, Adv. Phys. 27, 799 (1978).ADSCrossRefGoogle Scholar
  29. 29.
    K.F. Berggren, B.E. Sernelius, Phys. Rev. B 24, 1971 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    A. Gulino, G. Tabbi, Appl. Surf. Sci. 245, 322 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    K.R. Brown, A.P. Fox, M.J. Natan, J. Am. Chem. Soc. 118, 1154 (1996).CrossRefGoogle Scholar
  32. 32.
    L. Bao, S.M. Mahurin, R.G. Haire, S. Dai, Anal. Chem. 75, 6614 (2003).CrossRefGoogle Scholar
  33. 33.
    S. Kidambi, J.H. Dai, J. Li, L.M. Bruening, J. Am. Chem. Soc. 126, 2658 (2004).CrossRefGoogle Scholar
  34. 34.
    S. Kose, F. Atay, V. Bilgin, I. Akyuz, Int. J. Hydrogen Energy 34, 5260 (2009).CrossRefGoogle Scholar
  35. 35.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Massachusetts, 1956).Google Scholar
  36. 36.
    V. Bilgin, S. Kose, F. Atay, I. Akyuz, Mater. Chem. Phys. 94, 103 (2005).CrossRefGoogle Scholar
  37. 37.
    D.P. Padiyan, A. Marikini, K.R. Murli, Math. Chem. Phys. 78, 51 (2002).CrossRefGoogle Scholar
  38. 38.
    C.S. Barret, T.B. Massalski, Structure of Metals (Pergamon Press, Oxford, 1980).Google Scholar
  39. 39.
    S. Ilican, Y. Caglar, M. Caglar, J. Optoelectron. Adv. Mater. 10, 2578 (2008).Google Scholar
  40. 40.
    C. Aydin, H.M. El-Nasser, F. Yakuphanoglu, I.S. Yahia, M. Aksoy, J. Alloys Compd. 509, 854 (2011).CrossRefGoogle Scholar
  41. 41.
    C. Aydin, M.S. Abd El-sadek, Kaibo Zheng, I.S. Yahia, F. Yakuphanoglu, Opt. Laser Technol. 48, 447 (2013).ADSCrossRefGoogle Scholar
  42. 42.
    J. Tauc, R. Grigorvici, Y. Yanca, Phys. Status Solidi 15, 627 (1966).CrossRefGoogle Scholar
  43. 43.
    J. Tauc, Amorphous and liquid semiconductors (Plenum Press, New York, 1974) p. 171.Google Scholar
  44. 44.
    J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).Google Scholar
  45. 45.
    P. Kubelka, F. Munk, Z. Tech. Phys. (Leipzig) 12, 593 (1931).Google Scholar
  46. 46.
    A. Escobedo-Morales, E. Sanchez-Mora, U. Pal, Rev. Mex. Fis. S53, 18 (2007).Google Scholar
  47. 47.
    T.S. Moss, Proc. Phys. Soc. London B 67, 775 (1954).ADSCrossRefGoogle Scholar
  48. 48.
    R. Cebulla, R. Wendt, K. Ellmer, J. Appl. Phys. 83, 1087 (1998).ADSCrossRefGoogle Scholar
  49. 49.
    C. Aydin, Omar A. Al-Hartomy, A.A. Al-Ghamdi, F. Al-Hazmi, I.S. Yahia, F. El-Tantawy, F. Yakuphanoglu, J. Electroceram. 29, 155 (2012).CrossRefGoogle Scholar
  50. 50.
    Y. Fahrettin, J. Alloys Compd. 507, 184 (2010).CrossRefGoogle Scholar
  51. 51.
    A.A.M. Farag, I.S. Yahia, Opt. Commun. 283, 4310 (2010).ADSCrossRefGoogle Scholar
  52. 52.
    T.S. Moss, Optical Process in Semiconductors (Butter Worths, London, 1959).Google Scholar
  53. 53.
    P.P. Banerjee, Proc. IEEE 73, 1859 (2005).CrossRefGoogle Scholar
  54. 54.
    F. Abeles, Optical Properties of Solids (North-Holland Publishing Company, London, 1972).Google Scholar
  55. 55.
    F. Yakuphanoglu, M. Kandaz, M.N. Yarathýr, F.B. Senkal, Physica B 393, 235 (2007).ADSCrossRefGoogle Scholar
  56. 56.
    T.S. Moss, G.J. Burrell, B. Ellis, Semiconductor Opto-Electronics (Wiley, New York, 1973).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Solid Sate Lab., Physics Department, Faculty of ScienceSouth Valley UniversityQenaEgypt

Personalised recommendations