Advertisement

Uncertain vibration equation of large membranes

  • Smita Tapaswini
  • S. Chakraverty
  • Diptiranjan Behera
Regular Article

Abstract.

The study of the vibration of large membranes is important due to its well-known applications. There exist various investigations for the above problem where the variables and parameters are given as crisp/exact. In practice, we may not have these parameters exactly but those may be known in some uncertain form. In the present paper, these uncertainties are taken as interval/fuzzy and the authors propose here a new method viz. that of the double parametric form of fuzzy numbers to handle the uncertain problem of large membranes. Finally, the problem has been solved using the Homotopy Perturbation Method (HPM). The present method performs very well in terms of computational efficiency. The reliability of the method is shown for obtaining an approximate numerical solution for different cases. Results are given in terms of plots and are also compared in special cases.

Keywords

Fuzzy Number Parametric Form Triangular Fuzzy Number Homotopy Perturbation Method Vibration Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lord Rayleigh, The theory of sound (John William Strutt, Dover, 1945)Google Scholar
  2. 2.
    A. Yildirim, C. Ünlü, S.T. Mohyud-Din, Appl. Appl. Math. 1, 24 (2010)CrossRefGoogle Scholar
  3. 3.
    S.T. Mohyud-Din, A. Yildirim, Comput. Math. Model 23, 228 (2012)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    M.E. Sunny, R.K. Kapania, C. Sultan, AIAA J. 50, 1796 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S.L. Chang, L.A. Zadeh, IEEE Trans. Syst. Man. Cybernet 2, 30 (1972)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    D. Dubois, H. Prade, Fuzzy Sets Syst. 8, 225 (1982)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    O. Kaleva, Fuzzy Sets Syst. 24, 301 (1987)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    O. Kaleva, Fuzzy Sets Syst. 35, 389 (1990)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    S. Seikkala, Fuzzy Sets Syst. 24, 319 (1987)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    S. Abbasbandy, T. Allahviranloo, Comput. Math. Appl. 2, 113 (2002)MathSciNetGoogle Scholar
  11. 11.
    J.J. Nieto, R. Rodríguez-López, D. Franco, Int. J. Unc. Fuzz. Knowl. Based Syst. 14, 687 (2006)CrossRefMATHGoogle Scholar
  12. 12.
    O. Akin, T. Khaniyev, O. Oruc, I.B. Turksen, Expert Syst. Appl. 40, 953 (2013)CrossRefGoogle Scholar
  13. 13.
    T. Allahviranloo, E. Ahmady, N. Ahmady, Int. J. Comput. Math. 86, 730 (2009)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    T. Allahvianloo, S. Abbasbandy, H. Rouhparvar, Appl. Soft Comput. 11, 2186 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Chalco-Cano, H. Roman-Flores, Chaos Solitons Fractals 38, 112 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    A. Khastan, J.J. Nieto, R. Rodriguez-Lopez, Fuzzy Sets Syst. 177, 20 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    M. Ma, M. Friedman, A. Kandel, Fuzzy Sets Syst. 105, 133 (1999)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    N. Mikaeilvand, S. Khakrangin, Neural Comput. Appl. 21, S307 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Palligkinis, G. Papageorgiou, I. Famelis, Appl. Math. Comput. 209, 97 (2009)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    P. Prakash, V. Kalaiselvi, Int. J. Comput. Math. 86, 121 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    S. Tapaswini, S. Chakraverty, Int. J. Fuzzy Inf. Eng. 4, 293 (2012)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    S. Tapaswini, S. Chakraverty, Int. J. Artif. Intell. Soft Comput. 4, 58 (2014)CrossRefGoogle Scholar
  23. 23.
    J.H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999)ADSCrossRefMATHGoogle Scholar
  24. 24.
    J.H. He, Int. J. Non-linear Mech. 35, 37 (2000)ADSCrossRefMATHGoogle Scholar
  25. 25.
    O. Abdulaziz, I. Hashim, S. Momani, J. Comput. Appl. Math. 216, 574 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Z. Azimzadeh, A.R. Vahidi, E. Babolian, Indian J. Phys. 86, 721 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    D. Behera, S. Chakraverty, Cent. Eur. J. Phys. 11, 792 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Biazar, H. Ghazvini, Phys. Lett. A 366, 79 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    S. Chakraverty, D. Behera, Alexandria Eng. J. 52, 557 (2013)CrossRefGoogle Scholar
  30. 30.
    F.G.M. Cui, J. Comput. Appl. Math. 235, 2405 (2011)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    D.D. Ganji, Phys. Lett. A 335, 337 (2006)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    T. Ozis, C. Akçi, Meccanica 46, 341 (2011)CrossRefMathSciNetGoogle Scholar
  33. 33.
    C. Chun, Z. Naturforsch. A 65a, 59 (2010)Google Scholar
  34. 34.
    J.-H. Lu, C.L. Zheng, Z. Naturforsch. A 65a, 301 (2010)Google Scholar
  35. 35.
    M.M. Mousa, A. Kaltayev, Z. Naturforsch. A 65a, 511 (2010)Google Scholar
  36. 36.
    R. Sakthivel, C. Chun, J. Lee, Z. Naturforsch. A 65a, 633 (2010)Google Scholar
  37. 37.
    Y. Khan, Q. Wu, N. Faraz, A. Yildirim, S.T. Mohyud-Din, Z. Naturforsch. A 67a, 147 (2012)CrossRefGoogle Scholar
  38. 38.
    M.A. Balci, A. Yildirim, Z. Naturforsch. A 66a, 87 (2011)CrossRefGoogle Scholar
  39. 39.
    A. Kimiaeifar, Z. Naturforsch. A 66a, 461 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Abbasbandy, Appl. Math. Comput. 173, 493 (2006)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    M.A. Noor, S.T. Mohyud-Din, Int. J. Nonlinear Sci. Numer. Simulat. 9, 395 (2008)Google Scholar
  42. 42.
    M. Jafari, M.M. Hosseini, S.T. Mohyud-Din, M. Ghovatmand, Int. J. Nonlinear Sci. Numer. Simulat. 11, 1047 (2010)Google Scholar
  43. 43.
    S.T. Mohyud-Din, M.A. Noor, K.I. Noor, Math. Prob. Eng. 2009, 1 (2009)Google Scholar
  44. 44.
    S.T. Mohyud-Din, A. Yildirim, S.A. Sezer, Z. Naturforsch. A 65a, 1033 (2010)Google Scholar
  45. 45.
    S.T. Mohyud-Din, M.A. Noor, K.I. Noor, Int. J. Nonlinear Sci. Numer. Simulat. 10, 581 (2009)CrossRefGoogle Scholar
  46. 46.
    S.T. Mohyud-Din, M.A. Noor, K.I. Noor, Int. J. Nonlinear Sci. Numer. Simulat. 10, 223 (2009)CrossRefGoogle Scholar
  47. 47.
    M.A. Noor, S.T. Mohyud-Din, Comput. Math. Appl. 58, 2182 (2009)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    T. Allahviranloo, S. Hashemzehi, J. Appl. Math. Islam Azad Univ. Lahijan 5, 1 (2008)Google Scholar
  49. 49.
    E. Babolian, A.R. Vahidi, Z. Azimzadeh, Int. J. Ind. Math. 4, 353 (2012)Google Scholar
  50. 50.
    M. Ghanbari, Int. J. Ind. Math. 1, 19 (2009)Google Scholar
  51. 51.
    M. Matinfar, M. Saeidy, J. Math. Comput. Sci. 1, 377 (2010)Google Scholar
  52. 52.
    S. Tapaswini, S. Chakraverty, Int. J. Comput. Appl. 64, 5 (2013)Google Scholar
  53. 53.
    M. Hanss, Applied Fuzzy Arithmetic: An Introduction with engineering applications (Springer-Verlag, Berlin, 2005)Google Scholar
  54. 54.
    L. Jaulin, M. Kieffer, O.T. Didri, E. Walter, Applied interval analysis (Springer, 2001)Google Scholar
  55. 55.
    T.J. Ross, Fuzzy logic with engineering applications (Wiley Student Edition, 2007)Google Scholar
  56. 56.
    H.J. Zimmermann, Fuzzy set theory and its application (Kluwer Academic Publishers, Boston/Dordrecht/London, 2001)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Smita Tapaswini
    • 1
  • S. Chakraverty
    • 1
  • Diptiranjan Behera
    • 1
  1. 1.Department of MathematicsNational Institute of Technology RourkelaOdishaIndia

Personalised recommendations