Advertisement

Stochastic resonance in the Bénard system

  • Leonardo Barbini
  • Isabella Bordi
  • Klaus Fraedrich
Regular Article

Abstract.

In this paper the effect of small stochastic perturbations on a dynamical system describing the Bénard thermal convection is studied. In particular, the two-dimensional Oberbeck-Boussinesq equations governing the dynamics of three interacting Rayleigh rolls with increasing horizontal wave numbers (i.e., three horizontal modes in the Fourier transform) are reduced to a system of gradient type. The aim is to study the transition paths between the stable steady states, when a stochastic perturbation is taken into account, and the occurrence of stochastic resonance, when the system is perturbed by white noise and the first (gravest) mode is forced by an external periodic component. Results show that i) random transitions between stable steady states representing a clockwise and a counter-clockwise circulation occur through the two saddle points associated with the second mode and not through the (unstable) conductive state nor the saddle points related to the third mode; ii) the introduction of the third mode, as well as of others of smaller spatial scales, does not affect transitions that remain confined along the trajectories linking stable convective states through the saddle points associated with the second mode; iii) the system exhibits a stochastic resonance behavior leading to large amplification of the small amplitude periodic component compared to the one leading to the classical (one-dimensional) stochastic resonance.

Keywords

Saddle Point Rayleigh Number Stochastic Resonance Thermal Convection Conductive State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F.H. Busse, Rep. Proc. Phys. 41, 1930 (1978)ADSGoogle Scholar
  2. 2.
    A.V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics (World Scientific, Singapore, 1998)Google Scholar
  3. 3.
    B. Saltzman, J. Atmos. Sci. 19, 329 (1962)ADSCrossRefGoogle Scholar
  4. 4.
    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)ADSCrossRefGoogle Scholar
  5. 5.
    J.J. Niemela, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, J. Fluid Mech. 449, 169 (2001)ADSCrossRefMATHGoogle Scholar
  6. 6.
    K.R. Sreenivasan, A. Bershadskii, J.J. Niemela, Phys. Rev. E 65, 056306-1 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    R. Benzi, A. Sutera, J. Phys. A 17, 2551 (1984)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    W. Ren, Commun. Math. Sci. 1, 377 (2003)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    A. Sutera, Q. J. R. Meteor. Soc. 107, 137 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    L. Barbini, I. Bordi, K. Fraedrich, A. Sutera, Eur. Phys. J. Plus 128, 13 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Zippelius, M. Lücke, J. Stat. Phys. 24, 345 (1981)ADSCrossRefGoogle Scholar
  13. 13.
    R.E. Moritz, A. Sutera, Adv. Geophys. 23, 345 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    A. Sutera, J. Atmos. Sci. 37, 245 (1980)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 18, 2239 (1985)ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    P.E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, 3rd edition (Springer, 1999)Google Scholar
  17. 17.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77: The art of scientific computing, 2nd edition (Cambridge University Press, 1992)Google Scholar
  18. 18.
    G. Jona-Lasinio, Small stochastic perturbations of dynamical systems, in Turbulence and predictability in geophysical fluid dynamics and climate dynamics (North-Holland Physics Publishing, 1985)Google Scholar
  19. 19.
    D. Crossley, O. Jensen, J. Jacobs, Phys. Earth Planet. Inter. 42, 143 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    P. Vélez-Belchí, A. Alvarez, P. Colet, J. Tintoré, R.L. Haney, Geophys. Res. Lett. 28, 2053 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Schuss, Theory and applications of stochastic differential equations (John Wiley & Sons, 1980)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Leonardo Barbini
    • 1
  • Isabella Bordi
    • 1
  • Klaus Fraedrich
    • 2
  1. 1.Department of PhysicsSapienza University of RomeRomeItaly
  2. 2.Max Planck Institute of MeteorologyHamburgGermany

Personalised recommendations