X-ray diffraction, magnetic and magnetocaloric properties of La0.6Ca0.4Mn1−xFexO3 (0 ≤ x ≤ 0.3) manganites prepared by the sol-gel method

  • Abir Nasri
  • S. Zouari
  • M. Ellouze
  • E. K. Hlil
  • F. Elhalouani
Regular Article


Structural, magnetic and magnetocaloric properties of La0.6Ca0.4Mn1−x Fe x O3 (0 ≤ x ≤ 0.3) manganites, synthesized using the sol-gel method, were investigated. Rietveld refinement of the X-ray diffraction patterns show that all our samples have single phase and crystallize in the orthorhombic structure with the Pnma space group. The unit cell volume increases when increasing the Fe content. Fe doping leads to a weakening of the ferromagnetic (FM) ordering at low temperature, the Curie temperature T C decreases from 260 K for x = 0 to 44 K for x = 0.2. The magnetocaloric effect (MCE) was estimated, in terms of isothermal magnetic entropy change (−ΔS M ), using the M(T, μ 0 H) data and employing the thermodynamic Maxwell equation. The maximum value of the magnetic entropy change, (−ΔS M max ) decreases from 3.66 J/kg K for x = 0 to 2.38 J/kg K for x = 0.1 under an applied magnetic field change of 5T. The magnetic-entropy change is 1.67 J/kg K at T C (260 K) for a magnetic field of 2T and the RCP is 65 J/kg, which suggests the La0.6Ca0.4MnO3 compound as a possible candidate for magnetic refrigerants near room temperature.


Manganite Magnetic Entropy Change Magnetic Refrigerant Relative Cool Power Magnetocaloric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Z.B. Guo, Y.W. Du, J.S. Zhu, H. Huang, W.P. Ding, D. Feng, Phys. Rev. Lett. 78, 1142 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    M.B. Salamon, M. Jaime, J. Rev. Mod. Phys. 73, 583 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    A. Tozri, E. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 322, 2516 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    M. Khlifi, M. Bejar, O. ELSadek, E. Dhahri, M.A. Ahmed, E.K. Hlil, J. Alloys Compd. 509, 7410 (2011).CrossRefGoogle Scholar
  5. 5.
    R.D. Shull, R.D. McMichael, J.J. Ritter, Nanostruct. Mater. 2, 205 (1993).CrossRefGoogle Scholar
  6. 6.
    F. Casanova, X. Batlle, A. Labarta, Phys. Rev. B 66, 212402 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    K.A. Gschneidner, V.K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    C. Zener, Phys. Rev. 82, 403 (1951).ADSCrossRefGoogle Scholar
  9. 9.
    M.H. Phan, S.B. Tian, D.Q. Hoang, S.C. Yu, A.N. Ulyanov, J. Magn. Magn. Mater. 258, 309 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    G.H. Rao, J.R. Sun, A. Kattwinkel, L. Haupt, r.K. Baerne, E. Schmitt, E. Gmelin, Phys. B 269, 379 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    S.C. Hong, S.J. Kim, E.J. Hahn, S. Park, C.S. Kim, IEEE Trans. Magn. 45, 2565 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    P. Nisha, S. Savitha Pillai, Azad Darbandi, Manoj Raama Varma, K.G. Suresh, Horst Hahn, J. Mater. Chem. Phys. 136, 66 (2012).Google Scholar
  13. 13.
    K. Cherif, S. Zemnia, Ja. Dhahri, Je. Dhahri, M. Oumezzine, H. Ghedira, J. Alloys Compd. 396, 29 (2005).CrossRefGoogle Scholar
  14. 14.
    M.H. Yu, P. Sujatha Devi, L.H. Lewis, Sanjay Sampath, J.B. Parise, R.J. Gambino, Mater. Sci. Eng. B 97, 245 (2003).CrossRefGoogle Scholar
  15. 15.
    G.C. Lin, X.L. Yu, Q. Wei, J.X. Zhang, Mater. Lett. 59, 2149 (2005).CrossRefGoogle Scholar
  16. 16.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edition (Addison-Wesley, London, 1978) p. 102.Google Scholar
  17. 17.
    J. Rodriguez-Carvajal, Fullprof'98, Laboratoire Leon Briouillon (CEACNRS, 1998).Google Scholar
  18. 18.
    C.V. Vazquez, M.C. Blanco, M.A.L. Quintela, R.D. Sanchez, J. Rivas, S.B. Oseroff, J. Mater. Chem. 8, 991 (1998).CrossRefGoogle Scholar
  19. 19.
    A.G. Souza Filho, J.L.B. Faria, I. Guedes, J.M. Sasaki, P.T.C. Freire, V.N. Freire, J. Mendes Filho, M. Xavier Jr, F.A.O. Cabral, J.H. de Araujo, J.A.P. da Costa, Phys. Rev. B 67, 052405 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    J. Gutiérrez, A. Penà, J.M. Barandiaran, T. Hernández, J.L. Pizarro, L. Lezama, M. Insausti, Rojo, Phys. Rev. B 61, 9028 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    P. Scherrer, Goett. Nachr. Math. Phys. 2, 98 (1918).Google Scholar
  22. 22.
    A. Ajan, N. Venkateramani, S. Prasad, S.N. Shringi, A.K. Nigam, R. Pinto, J. Appl. Phys. 8, 7169 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    J. Mira, J. Rivas, F. Rivadulla, C. Vázquez-Vázquez, M.A. López-Quintela, Phys. Rev. B 60, 2998 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    S.K. Banerjee, Phys. Lett. 12, 16 (1964).ADSCrossRefGoogle Scholar
  25. 25.
    P. Lampen, A. Puri, M.H. Phan, H. Srikanth, J. Alloys. Compd. 512, 94 (2012).CrossRefGoogle Scholar
  26. 26.
    D.T. Morelli, A.M. Mance, J.V. Mantese, A.L. Micheli, J. Appl. Phys. 79, 373 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    W.J. Lu, X. Luo, C.Y. Hao, W.H. Song, Y.P. Sun, J. Appl. Phys. 104, 113908 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    W. Tang, W.J. Lu, X. Luo, B.S. Wang, X.B. Zhu, W.H. Song, Z.R. Yang, Y.P. Sun, Phys. B 405, 2733 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    Z.B. Guo, Y.W. Du, J.S. Zhu, H. Huang, W.P. Ding, D. Feng, Phys. Rev. Lett. 78, 1142 (1997).ADSCrossRefGoogle Scholar
  30. 30.
    P.G. Radaelli, D.E. Cox, M. Marezio, S.W. Cheong, P.E. Schiffer, A.P. Ramirez, Phys. Rev. Lett. 75, 4488 (1995).ADSCrossRefGoogle Scholar
  31. 31.
    M. Bejar, R. Dhahri, F. ElHalouani, E. Dhahri, J. Alloys Compd. 414, 31 (2006).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Abir Nasri
    • 1
  • S. Zouari
    • 1
  • M. Ellouze
    • 1
  • E. K. Hlil
    • 2
  • F. Elhalouani
    • 3
  1. 1.Faculty of Sciences of SfaxSfax UniversitySfaxTunisia
  2. 2.Institut NéelCNRS et Université Joseph FourierGrenoble cedex 9France
  3. 3.National School of EngineersSfax UniversitySfaxTunisia

Personalised recommendations