Advertisement

Dynamics of a central electron spin coupled to an anti-ferromagnetic spin bath driven by a variable magnetic field in the Landau-Zener scenario

  • Georges Collince Fouokeng
  • Martin Tchoffo
  • Mathurin Esouague Ateuafack
  • Lukong Cornelius Fai
Regular Article

Abstract.

The Landau-Zener (LZ) transition probability of a two-level crossing in a single quantum dot driven by a two-state auto-correlated (TSAC) noise is studied. The model used isolates a central electron spin (CES) system bathed with TSAC noise and an anti-ferromagnetic spin bath. This model turnes into the LZ formalism in the limit of weak-excitation magnetic field. The effects of noise and of the coupling with the spin chain, on the LZ-transition probability are studied. In the weak coupling regime of the CES with the bath, it is seen that the TSAC noise effect can be compared with that of a deterministic sinusoidal oscillating function. In the strong coupling regime this effect decreases and alters the noise process on the LZ-transition probability.

Keywords

Spin Chain Weak Coupling Regime Adiabatic Passage Spin Bath Random Telegraph Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Bloch, Phys. Rev. 70, 460 (1946)CrossRefADSGoogle Scholar
  2. 2.
    Y. Xiao-Zhong, G. Hsi-Sheng, Z. Ka-Di, New J. Phys. 9, 219 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Tchoffo, G.C. Fouokeng et al., World J. Condens. Matter Phys. 2, 246 (2012)CrossRefADSGoogle Scholar
  4. 4.
    M. Tchoffo, G.C. Fouokeng, L.C. Fai, M.E. Ateuafack, J. Quantum Inf. Sci. 3, 10 (2013)CrossRefGoogle Scholar
  5. 5.
    Y. Xiao-Zhong, Hsi-Sheng Goan, Ka-Di Zhu, Phys. Rev. B 75, 045331 (2007)CrossRefADSGoogle Scholar
  6. 6.
    H. Ribeiro, J.R. Petta, Guido Burkard, Phys. Rev. B 82, 115445 (2010)CrossRefADSGoogle Scholar
  7. 7.
    K.C. Nowack, F.H.L. Koppens, Yu.V. Nazarov, L.M.K. Vandersypen, Science 318, 1430 (2007)CrossRefADSGoogle Scholar
  8. 8.
    J. Schliemann, A. Khaetskii, D. Loss, J. Phys. Condens. Matter 15, R1809 (2003)CrossRefADSGoogle Scholar
  9. 9.
    S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, A. Yacoby, Nat. Phys. 5, 903 (2009)CrossRefGoogle Scholar
  10. 10.
    K. Saito, M. Wubs, S. Kohler, Y. Kayanuma, P. Hänggi, Phys. Rev. B 75, 214308 (2007)CrossRefADSGoogle Scholar
  11. 11.
    W.D. Oliver, Y. Yu, J.C. Lee, K.K. Berggren, L.S. Levitov, T.P. Orlando, Science 310, 1653 (2005)CrossRefADSGoogle Scholar
  12. 12.
    M. Sillanpaa, T. Lehtinen, A. Paila, Y. Makhlin, P. Hakonen, Phys. Rev. Lett. 96, 187002 (2006)CrossRefADSGoogle Scholar
  13. 13.
    J. Ankerhold, H. Grabert, Phys. Rev. Lett. 91, 016803 (2003)CrossRefADSGoogle Scholar
  14. 14.
    K. Saito, Y. Kayanuma, Phys. Rev. B 70, 201304(R) (2004)CrossRefADSGoogle Scholar
  15. 15.
    G.C. Fouokeng, M. Tchoffo et al., Adv. Condens. Matter Phys. 2014, 526205 (2014)CrossRefGoogle Scholar
  16. 16.
    F. Bloch, Z. Phys. A 52, 555 (1929)CrossRefGoogle Scholar
  17. 17.
    L.D. Landau, Phys. Z. Sowjetunion 2, 46 (1932)Google Scholar
  18. 18.
    R. McDermott, IEEE Trans. Appl. Superconduct. 19, 1 (2009)CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    B. Rosam, K. Leo et al., Phys. Rev. B 68, 125301 (2003)CrossRefADSGoogle Scholar
  20. 20.
    P. Abumov, D.W.L. Sprung, Phys. Rev. B 75, 165421 (2007)CrossRefADSGoogle Scholar
  21. 21.
    A. Zenesini et al., New J. Phys. 10, 053038 (2008)CrossRefADSGoogle Scholar
  22. 22.
    K. Rapedius, C. Elsen, D. Witthaut, S. Wimberger, H.J. Korsch, Phys. Rev. A 82, 063601 (2010)CrossRefADSGoogle Scholar
  23. 23.
    R. Hanson et D.D. Awschalom, Nature 453, (2008)Google Scholar
  24. 24.
    J. Clarke, F.K. Wilhelm, Nature 453, (2008)Google Scholar
  25. 25.
    T.D. Ladd, F. Jelezko et al., Nature 464, (2010)Google Scholar
  26. 26.
    P.W. Anderson, J. Phys. Soc. Jpn. 9, (1954)Google Scholar
  27. 27.
    R. Kubo, J. Phys. Soc. Jpn. 9, (1954)Google Scholar
  28. 28.
    P.R. Berman, et R.G. Brewer, Phys. Rev. A 32, 5 (1985)CrossRefGoogle Scholar
  29. 29.
    R.F. Loring, et S. Mukame, Chem. Phys. Lett. 114, (1985)Google Scholar
  30. 30.
    E. Shimshoni, A. Stern, Phys. Rev. B 47, 9523 (1992)CrossRefADSGoogle Scholar
  31. 31.
    M. Wubs, K. Saito, S. Kohler, P. Hanggi, Y. Kayanuma, Phys. Rev. Lett. 97, 200404 (2006)CrossRefADSGoogle Scholar
  32. 32.
    V.L. Pokrovsky, S. Scheidl, Phys. Rev. B 70, 014416 (2004)CrossRefADSGoogle Scholar
  33. 33.
    S.N. Shevchenko, S. Ashhab, Franco Nori, Phys. Rep. 492, (2010)Google Scholar
  34. 34.
    J.I. Vestgården, J. Bergli, Y.M. Galperin, Phys. Rev. B 77, 014514 (2008)CrossRefADSGoogle Scholar
  35. 35.
    I.I. Rabi, Phys. Rev. 51, 652 (1937)CrossRefADSGoogle Scholar
  36. 36.
    R. Hanson, D.D. Awschalom, Nature (London) 453, 1043 (2008)CrossRefADSGoogle Scholar
  37. 37.
    A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, New York, 1961)Google Scholar
  38. 38.
    N. Rosen, C. Zener, Phys. Rev. 40, 502 (1932)CrossRefMATHADSGoogle Scholar
  39. 39.
    F.T. Hioe, C.E. Carroll, Phys. Rev. A 32, 1541 (1985)CrossRefADSGoogle Scholar
  40. 40.
    E.C.G. Stuckelberg, Helv. Phys. Acta 5, 369 (1932)Google Scholar
  41. 41.
    P. Hanggi, P. Jung, Adv. Chem. Phys. 39, 239 (1995)Google Scholar
  42. 42.
    W. Yang, R.B. Liu, Phys. Rev. B 78, 085315 (2008)CrossRefADSGoogle Scholar
  43. 43.
    D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, R. Fazio, Phys. Rev. A 75, 032333 (2007)CrossRefADSGoogle Scholar
  44. 44.
    C. Zener, Proc. Roy. Soc. London A 137, 696 (1932)CrossRefADSGoogle Scholar
  45. 45.
    E. Majorana, Nuovo Cimento 9, 43 (1932)CrossRefGoogle Scholar
  46. 46.
    A.V. Shytov, D.A. Ivanov, M.V. Feigelman, Eur. Phys. J. B 36, 263 (2003)CrossRefADSGoogle Scholar
  47. 47.
    F. Di Giacomo, E.E. Nikitin, Phys. Usp. 48, 515 (2005)CrossRefADSGoogle Scholar
  48. 48.
    N.V. Vitanov, Phys. Rev. A 59, 2 (1999)Google Scholar
  49. 49.
    A. Ishkhanyan, J. Javanainenand, H. Nakamura, J. Phys. A: Math. Gen. 38, 3505 (2005)CrossRefMATHADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Georges Collince Fouokeng
    • 1
  • Martin Tchoffo
    • 1
  • Mathurin Esouague Ateuafack
    • 1
  • Lukong Cornelius Fai
    • 1
  1. 1.Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of ScienceUniversity of DschangDschangCameroon

Personalised recommendations