A confining model for charmonium and new gauge-invariant field equations

Regular Article


We discuss a confining model for charmonium in which the attractive force are derived from a new type of gauge field equation with a generalized SU3 gauge symmetry. The new gauge transformations involve non-integrable phase factors with vector gauge functions ω ω a (x). These transformations reduce to the usual SU3 gauge transformations in the special case ω μ a (x) = ∂ μ ξ a (x). Such a generalized gauge symmetry leads to the fourth-order equations for new gauge fields and to the linear confining potentials. The fourth-order field equation implies that the corresponding massless gauge boson has non-definite energy. However, the new gauge boson is permanently confined in a quark system by the linear potential. We use the empirical potentials of the Cornell group for charmonium to obtain the coupling strength f 2/(4π) ≈ 0.19 for the strong interaction. Such a confining model of quark dynamics could be compatible with perturbation. The model can be applied to other quark-antiquark systems.


Gauge Transformation Gauge Boson Gauge Symmetry Charmed Quark Color Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.-M. Yan, Phys. Rev. Lett. 34, 369 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Hsu, Modern Phys. Lett. A 29, 1450031 (2014).ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    C.N. Yang, Phys. Rev. Lett. 33, 445 (1974).ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    J.P. Hsu, Phys. Rev. Lett. 36, 1515 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    A. Pais, G.E. Uhlenbeck, Phys. Rev. 79, 145 (1950).ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Y. Takano, Progr. Theor. Phys. 26, 304 (1961).ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    K. Andrzejewski, J. Gonera, P. Maślanka, Progr. Theor. Phys. 125, 247 (2011).ADSCrossRefMATHGoogle Scholar
  8. 8.
    K. Huang, Quarks, Leptons and Gauge Fields (World Scientific, 1982) pp. 22--33, pp. 61--72 and pp. 241--245.Google Scholar
  9. 9.
    B.W. Lee, Jean Zinn-Justin, Phys. Rev. 7, 1047 (1973).CrossRefGoogle Scholar
  10. 10.
    J.P. Hsu, Eur. Phys. J. Plus 127, 35 (2012) DOI:10.1140/epjp/i2012-12035-9.CrossRefGoogle Scholar
  11. 11.
    I.M. Gel'fand, G.E. Shilov, Generalized Functions, Vol. 1 (Academic Press, New York, 1964) p. 363.Google Scholar
  12. 12.
    Particle Data Group, Particle Physics Booklet (IOP Publishing, 2010) p. 21.Google Scholar
  13. 13.
    J.P. Hsu, Mod. Phys. Lett. A 20, 2855 (2005).ADSCrossRefMATHGoogle Scholar
  14. 14.
    J.P. Hsu, L. Hsu, Space-Time Symmetry and Quantum Yang-Mills Gravity (World Scientific, 2013) pp. 212--215 and p. 225.Google Scholar
  15. 15.
    T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood Academic Publishers, Chur, London, 1981)pp. 584--587.Google Scholar
  16. 16.
    T. Kawanai, S. Sasaki, Phys. Rev. D 85, 091503(R) (2012).ADSCrossRefGoogle Scholar
  17. 17.
    G.S. Bali, Phys. Rep. 343, 1 (2001).ADSCrossRefMATHGoogle Scholar
  18. 18.
    T. Barnes, S. Godfrey, E.S. Swanson, Phys. Rev. D 72, 054026 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    H.B. Ai, J.P. Hsu, Found. Phys. 15, 155 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Hsu, Phys. Rev. D 26, 802 (1981).ADSCrossRefGoogle Scholar
  21. 21.
    J.P. Hsu, Nuovo Cimento B 88, 140 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Massachusetts DartmouthNorth DartmouthUSA

Personalised recommendations