Advertisement

QCD ghost reconstruction of f(T) gravity in flat FRW universe

  • Surajit Chattopadhyay
Regular Article

Abstract.

The present paper reports a reconstruction scheme for f(T) gravity based on QCD ghost dark energy. Two models of f(T) have been generated and the pressure and density contributions due to torsion have been reconstructed. Two realistic models have been obtained and the effective equations of state have been studied. Also, the squared speed of sound has been studied to examine the stability of the models.

Keywords

Dark Energy Hubble Parameter Dark Energy Model Accelerate Expansion Holographic Dark Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.G. Riess et al., Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    T. Padmanabhan, Curr. Sci. 88, 1057 (2005)ADSGoogle Scholar
  6. 6.
    T. Padmanabhan, Gen. Relativ. Gravit. 40, 529 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    L. Amendola, S. Tsujikawa, Dark Energy: Theory and Observations (Cambridge University Press, 2010)Google Scholar
  8. 8.
    K. Bamba, S. Capozziello, S.I. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J. Yoo, Y. Watanabe, Int. J. Mod. Phys. D 21, 1230002 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    R.-G. Cai, Z.-L. Tuo, H.-B. Zhang, Q. Su, Phys. Rev. D 84, 123501 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A. Pradhan, Ind. J. Phys. 88, 215 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Sharif, A. Jawad, Ind. J Phys. 88, 529 (2014)CrossRefGoogle Scholar
  13. 13.
    F.R. Urban, A.R. Zhitnitsky, Phys. Lett. B 688, 9 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    R. Garcia-Salcedo, T. Gonzalez, I. Quiros, M. Thompson-Montero, Phys. Rev. D 88, 043008 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    S. Nojiri, S.D. Odintsov, M. Sasaki, Phys. Rev. D 71, 123509 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    M. Jamil, D. Momeni, R. Myrzakulov, Eur. Phys. J. C 72, 2137 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    M. Jamil, D. Momeni, R. Myrzakulov, Eur. Phys. J. C 72, 1959 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    K. Bamba, M. Jamil, D. Momeni, R. Myrzakulov, Astrophys. Space Sci. 344, 259 (2013)ADSCrossRefMATHGoogle Scholar
  20. 20.
    M. Jamil, D. Momeni, R. Myrzakulov, Eur. Phys. J. C 72, 2122 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M. Jamil, D. Momeni, R. Myrzakulov, Eur. Phys. J. C 72, 2075 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    M. Jamil, D. Momeni, R. Myrzakulov, Eur. Phys. J. C 72, 2137 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M. Jamil, K. Yesmakhanova, D. Momeni, R. Myrzakulov, Cent. Eur. J. Phys. 10, 1065 (2012)CrossRefGoogle Scholar
  24. 24.
    D. Momeni, M.R. Setare, Mod. Phys. Lett. A 26, 2889 (2011)ADSCrossRefMATHGoogle Scholar
  25. 25.
    M.J.S. Houndjo, D. Momeni, R. Myrzakulov, Int. J. Mod. Phys. D 21, 1250093 (2012)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    M. Jamil, D. Momeni, R. Myrzakulov, Gen. Relativ. Gravit. 45, 263 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    M. Jamil, D. Momeni, R. Myrzakulov, P. Rudra, J. Phys. Soc. Jpn. 81, 114004 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    M. Jamil, D. Momeni, R. Myrzakulov, Eur. Phys. J. C 72, 2267 (2012)Google Scholar
  29. 29.
    M.E. Rodrigues, M.J.S. Houndjo, D. Momeni, R. Myrzakulov, Can. J. Phys. 92, 173 (2014)CrossRefGoogle Scholar
  30. 30.
    M.U. Farooq, M. Jamil, D. Momeni, R. Myrzakulov, Can. J. Phys. 91, 703 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    M.E. Rodrigues, M.J.S. Houndjo, J. Tossa, D. Momeni, R. Myrzakulov, JCAP 11, 024 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    M. Jamil, K. Yesmakhanova, D. Momeni, R. Myrzakulov, Cent. Eur. J. Phys. 10, 1065 (2012)CrossRefGoogle Scholar
  33. 33.
    R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    M.R. Setare, Int. J. Mod. Phys. D 12, 2219 (2008)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    M.R. Setare, Phys. Lett. B 644, 99 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    M.R. Setare, Phys. Lett. B 648, 329 (2007)ADSCrossRefMATHGoogle Scholar
  37. 37.
    M.R. Setare, Phys. Lett. B 653, 116 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    M.R. Setare, Phys. Lett. B 654, 1 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    M.R. Setare, Int. J. Mod. Phys. D 18, 419 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    S. Chattopadhyay, A. Pasqua, Ind. J. Phys. 87, 1053 (2013)CrossRefGoogle Scholar
  41. 41.
    K. Bamba, R. Myrzakulov, S. Nojiri, S.D. Odintsov, Phys. Rev. D 85, 104036 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    M.H. Daouda, M.E. Rodrigues, M.J.S. Houndjo, Eur. Phys. J. C 72, 1893 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    S. Chattopadhyay, A. Pasqua, Astrophys. Space Sci. 344, 269 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    M. R. Setare, Int. J. Mod. Phys. D 17, 2219 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    A. Rozas-Fernandez, Phys. Lett. B 709, 313 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    S. Nojiri, S.D. Odintsov, Phys. Rev. D 72, 023003 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ApplicationPailan College of Management and TechnologyKolkataIndia

Personalised recommendations