Illustrating the covariances of general relativity by perihelion precession

  • C. Jiang
  • W. Lin
Regular Article


We calculate the perihelion precession of a test particle in the Edditington-Robertson parameterized metric via the rate of change of the Runge-Lenz vector. It is shown that the calculation results are the same as in the standard, isotropic and harmonic coordinates. These results provide concrete illustrations of the covariances of general relativity. In addition, we find some typos in the derivation of the perihelion precession via the Runge-Lenz vector in Weinberg's classic general relativity textbook, and this finding might also be useful for the beginners who are reading the textbook.


General Relativity Test Particle Geodesic Equation Harmonic Form Isotropic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Einstein, Erklirung der Perihelbewegung des Merkurs aus der allgemeinen Relativitiitstheorie, Sitzungsberichte der preussischen Akademie der Wissenschaften, 831 (1915)Google Scholar
  2. 2.
    C.M. Will, Theory and experiment in gravitational physics, revised edition (Cambridge University Press, 1993)Google Scholar
  3. 3.
    U.J.J. Le Verrier, R. Acad. Sci. Paris 59, 379 (1859)Google Scholar
  4. 4.
    S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity (John Wiely & Sons, NY 1972) pp. 176--185, 230--233Google Scholar
  5. 5.
    G.M. Clemence, Astron. Papers Am. Ephemeris 11, 1 (1943)Google Scholar
  6. 6.
    G.M. Clemence, Rev. Mod. Phys. 19, 361 (1947)ADSCrossRefGoogle Scholar
  7. 7.
    S. Newcomb, Astron. Papers Am. Ephemeris 1, 472 (1882)Google Scholar
  8. 8.
    J. Bodenner, C. Will, Am. J. Phys. 71, 770 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    C.E. Aguiar, M.F. Banoso, Am. J. Phys. 64, 1042 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Physical Science and TechnologySouthwest Jiaotong UniversityChengduChina

Personalised recommendations