Phantom-like generalized cosmic chaplygin gas and traversable wormhole solutions

Regular Article


We study the traversable wormhole solutions by using a phantom-like generalized cosmic chaplygin gas and discuss their viability. This equation of state can explain the late-time cosmic acceleration through a variety of useful parameters and also has the ability to violate the null energy condition. In this scenario, we find wormhole solutions for the constant as well as variable redshift function and also for the isotropic case. We use the volume integral quantifier, which indicates the presence of phantom energy in a given wormhole solution. It is interesting to mention here that we are able to construct the traversable, asymptotically flat and stable wormhole solutions.


Dark Energy Shape Function Left Plot Lower Plot Null Energy Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Flamm, Phys. Z. 17, 448 (1916)MATHGoogle Scholar
  2. 2.
    A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)ADSCrossRefGoogle Scholar
  3. 3.
    M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    M.S. Morris et al., Phys. Rev. Lett. 61, 1446 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    F.S.N. Lobo, Phys. Rev. D 71, 084011 (2005)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    P.F. Gonzalez-Diaz, Phys. Rev. Lett. 93, 071301 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    V. Faraoni, W. Israel, Phys. Rev. D 71, 064017 (2005)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    F.S.N. Lobo, Phys. Rev. D 71, 124022 (2005)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Sushkov, Phys. Rev. D 71, 043520 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    P.F.K. Kuhfittig, Class. Quantum Grav. 23, 5853 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    A. DeBenedictis, R. Garattini, F.S.N. Lobo, Phys. Rev. D 78, 104003 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    M. Cataldo et al., Phys. Rev. D 78, 104006 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M. Cataldo et al., Phys. Rev. D 79, 024005 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    M. Cataldo, S.D. Campo, Phys. Rev. D 85, 104010 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M. Cataldo, P. Meza, Phys. Rev. D 87, 064012 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    F.S.N. Lobo, Phys. Rev. D 73, 064028 (2006)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    S. Chakraborty, T. Bandyopadhyay, Int. J. Mod. Phys. D 18, 463 (2009)ADSCrossRefMATHGoogle Scholar
  18. 18.
    M. Jamil et al., Eur. Phys. J. C 67, 513 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    M. Visser, Lorentzian Wormholes: From Einstein to Hawking (AIP, 1995)Google Scholar
  20. 20.
    P.F. González-Diaz, Phys. Rev. D 68, 021303 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    S.W. Hawking, Nature 248, 30 (1974)ADSCrossRefGoogle Scholar
  22. 22.
    M. Visser, S. Kar, N. Dadhich, Phys. Rev. Lett. 90, 201102 (2003)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    M. Jamil, M.U. Farooq, M.A. Rashid, Eur. Phys. J. C 59, 907 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan

Personalised recommendations