Numerical solution for the flow and heat transfer due to a permeable stretching surface embedded in a porous medium with a second-order slip and viscous dissipation

  • M. M. Khader
  • Ahmed M. Megahed
Regular Article


This paper is devoted to introduce a numerical simulation using the implicit finite difference method (FDM) with the theoretical study for the effect of viscous dissipation on the steady flow with heat transfer of Newtonian fluid towards a permeable stretching surface embedded in a porous medium with a second-order slip. The governing non-linear partial differential equations are converted into non-linear ordinary differential equations (ODEs) by using similarity variables. Exact solutions corresponding to momentum and energy equations for the case of no slip conditions are obtained. The resulting ODEs are successfully solved numerically with the help of FDM. Graphically results are shown for non-dimensional velocities and temperature. The effects of the porous parameter, the suction (injection) parameter, Eckert number, first- and second-order velocity slip parameter and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin friction and Nusselt numbers are presented. Comparison of numerical results is made with the earlier published results under limiting cases.


Porous Medium Nusselt Number Prandtl Number Viscous Dissipation Local Nusselt Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970)CrossRefGoogle Scholar
  2. 2.
    P.S. Gupta, A.S. Gupta, Can. J. Chem. Eng. 55, 744 (1977)CrossRefGoogle Scholar
  3. 3.
    A. Chakrabarti, A.S. Gupta, Q. Appl. Math. 37, 73 (1977)Google Scholar
  4. 4.
    P. Carragher, L.J. Crane, Z. Angew. Math. Mech. 62, 564 (1982)CrossRefGoogle Scholar
  5. 5.
    L.J. Grubka, K.M. Bobba, J. Heat Transfer 107, 248 (1985)CrossRefGoogle Scholar
  6. 6.
    C.K. Chen, M.I. Char, J. Math. Anal. Appl. 135, 568 (1988)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    I. Pop, T.Y. Na, Mech. Res. Commun. 25, 263 (1988)CrossRefMathSciNetGoogle Scholar
  8. 8.
    K. Vajravelu, J. Nayfeh, Acta Mech. 96, 1227 (1993)CrossRefGoogle Scholar
  9. 9.
    M.E. Ali, Waerme. Stoffuebertrag. 29, 227 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    R. Cortell, Appl. Math. Comput. 184, 864 (2007)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    C. Cottin-Bizonne, B. Cross, A. Steinberger, E. Charlaix, Phys. Rev. Lett. 94, 056 (2005)CrossRefGoogle Scholar
  12. 12.
    C.L.M.H. Navier, Mem. Acad. Sci. Inst. Fr. 6, 389 (1823)Google Scholar
  13. 13.
    P.A. Thompson, S.M. Troian, Nature 389, 360 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    M. Turkyilmazoglu, Int. J. Therm. Sci. 50, 2264 (2011)CrossRefGoogle Scholar
  15. 15.
    A.M. Megahed, Rheol. Acta 51, 841 (2012)CrossRefGoogle Scholar
  16. 16.
    M.M. Khader, Commun. Nonlinear Sci. Numer. Simul. 16, 2535 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    N.H. Sweilam, M.M. Khader, A.M. Nagy, Comput. Appl. Maths. 235, 2832 (2011)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    J.C. Butcher, Numerical Methods for Ordinary Differential Equations (John Wiley & Sons, 2003)Google Scholar
  19. 19.
    H. Johnston, J.G. Liu, J. Comput. Phys. 180, 120 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    P.M. Beckett, Int. J. Comput. Math. 14, 183 (1983)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    T. Fang, S. Yao, J. Zhang, A. Aziz, Commun. Nonlinear Sci. Numer. Simul. 15, 1831 (2010)ADSCrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    T. Fang, A. Aziz, Z. Naturforsch. A 65, 1087 (2010)Google Scholar
  23. 23.
    L. Wu, Appl. Phys. Lett. 93, 253103 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    D.B. Ingham, I. Pop, P. Cheng, Transp. Porous. Media 5, 381 (1990)CrossRefGoogle Scholar
  25. 25.
    D. Rees, J.L. Lage, Int. J. Heat Mass Transfer 40, 111 (1997)CrossRefMATHGoogle Scholar
  26. 26.
    P.M. Beckett, SIAM J. Appl. Math. 39, 372 (1980)ADSCrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    P.M. Beckett, I.E. Friend, Int. J. Heat Mass Transfer 27, 611 (1984)CrossRefMATHGoogle Scholar
  28. 28.
    G.D. Smith Numerical Solution of Partial Differential Equations (Oxford University Press, 1965)CrossRefGoogle Scholar
  29. 29.
    L.J. Grubka, K.M. Bobba, ASME J. Heat Transfer 107, 248 (1985)CrossRefGoogle Scholar
  30. 30.
    C.H. Chen, Heat Mass Transfer 33, 471 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    R. Sharma, Appl. Math. Comput. 219, 976 (2012)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, College of ScienceAl-Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceBenha UniversityBenhaEgypt

Personalised recommendations