Heat transfer in the boundary layer flow of a Casson fluid over a permeable shrinking sheet with viscous dissipation

  • M. Qasim
  • S. Noreen
Regular Article


In this paper the dual solutions in the flow of a Casson fluid over a porous shrinking surface are numerically discussed. Viscous dissipation in the heat transfer analysis is presented. Appropriate similarity transformations are used to convert governing nonlinear partial differential equations of flow and heat transfer into the system of nonlinear ordinary differential equations. The shooting technique with the Runge-Kutta method is employed to solve the resulting equations. Graphical results for dimensionless velocity and temperature are reported and examined very carefully. The study reveals that the existence of dual solutions is possible for some range of the suction parameter. For both solutions, the momentum boundary layer thickness decreases with the Casson fluid parameter. The thermal boundary layer thickness decreases with the Prandtl number and increases with the Eckert number (in both solutions). Further, the thermal boundary layer thickness decreases with increasing values of wall mass suction for the first solution, whereas it increases with increasing values of the mass suction parameter for the second solution.


Boundary Layer Prandtl Number Viscous Dissipation Dual Solution Thermal Boundary Layer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L.J. Crane, Z. Angew. Math. Mech. 21, 645 (1970).CrossRefGoogle Scholar
  2. 2.
    P. Carragher, L.J. Crane, Z. Angew. Math. Mech. 62, 564 (1982).CrossRefGoogle Scholar
  3. 3.
    A. Ishak, R. Nazar, I. Pop, Mecannica 41, 509 (2006).CrossRefMATHGoogle Scholar
  4. 4.
    A. Ishak, R. Nazar, I. Pop, Heat Mass Transfer 44, 921 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    S. Yao, T. Fang, Y. Zhong, Commun. Nonlinear Sci. Numer. Simulat. 16, 752 (2011).ADSCrossRefMATHGoogle Scholar
  6. 6.
    T. Fang, J. Zhang, S. Yao, Appl. Math. Comput. 217, 3747 (2010).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    M.Z. Salleh, R. Nazar, I. Pop, J. Taiwan Inst. Chem. Eng. 41, 651 (2010).CrossRefGoogle Scholar
  8. 8.
    N. Bachok, A. Ishak, I. Pop, Commun. Nonlinear. Sci. Numner. Simulat. 16, 4296 (2011).ADSCrossRefMATHGoogle Scholar
  9. 9.
    R. Kandasamy, K. Periasamy, K.K. Sivagnana Prabhu, Int. J. Heat Mass Transfer 48, 4557 (2005).CrossRefMATHGoogle Scholar
  10. 10.
    R. Kandasamy, K. Periasamy, J. Comput. Appl. Mech 6, 27 (2005).MATHGoogle Scholar
  11. 11.
    C.Y. Wang, Quart. Appl. Math. 48, 601 (1990).MATHMathSciNetGoogle Scholar
  12. 12.
    N.F.M. Noor, I. Hashim, Sains Malaysiana 38, 559 (2009).MATHGoogle Scholar
  13. 13.
    M. Miklavcic, C.Y. Wang, Quart. Appl. Math. 64, 283 (2006).MATHMathSciNetGoogle Scholar
  14. 14.
    T. Fang, J. Zhang, Commun. Nonlinear. Sci. Numer. Simulat. 14, 2853 (2009).ADSCrossRefMATHGoogle Scholar
  15. 15.
    T. Fang, S. Yao, Ji Zhang, Abdul Aziz, Commun. Nonlinear. Sci. Numer. Simulat. 15, 1831 (2010).ADSCrossRefMATHGoogle Scholar
  16. 16.
    T. Fang, Ji Zhang, S. Yao, Chin. Phys. Lett. 26, 014703 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    N.F.M. Noor, S. Awang Kechil, I. Hashim, Commun. Nonlinear Sci. Numer. Simulat. 15, 144 (2010).ADSCrossRefMATHGoogle Scholar
  18. 18.
    K. Bhattacharyya, Chin. Phys. Lett. 28, 074701 (2011).CrossRefGoogle Scholar
  19. 19.
    K. Bhattacharyya, G.C. Layek, Int. J. Heat Mass Transf. 54, 302 (2011).CrossRefMATHGoogle Scholar
  20. 20.
    M. Nakamura, T. Sawada, ASME J. Biomech. Eng. 110, 137 (1988).CrossRefGoogle Scholar
  21. 21.
    R.B. Bird, G.C. Dai, B.J. Yarusso, Rev. Chem. Eng. 1, 1 (1983).Google Scholar
  22. 22.
    S.A. Shehzad, T. Hayat, M. Qasim, S. Asghar, Braz. J. Chem. Eng. 30, 187 (2013).CrossRefGoogle Scholar
  23. 23.
    S.K. Nandy, ISRN Thermodyn. 2013, 108264 (2013).CrossRefGoogle Scholar
  24. 24.
    K. Bhattacharyya, T. Hayat, A. Alsaedi, Z. Angew. Math. Mech. (2013) DOI:10.1002/zamm.201200031.
  25. 25.
    S. Nadeem et al., Alexandria Eng. J. 52, 577 (2013).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations