Skip to main content
Log in

Advances in the development of micropattern gaseous detectors with resistive electrodes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The aim of this paper is to highlight very promising developments of a new family of micropattern gaseous detectors characterized by the presence in their layout of at least one resistive electrode. These novel detectors combine in one design the best features of RPCs (i.e. the protection against sparks) and conventional micropattern gaseous detectors (i.e. the high granularity and space resolution).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V. Parhomchuk et al., Nucl. Instrum. Methods 93, 269 (1971).

    Article  ADS  Google Scholar 

  2. B. Santonico et al., Nucl. Instrum. Methods 187, 377 (1981).

    Article  ADS  Google Scholar 

  3. F. Sauli, Nucl. Instrum. Method A 477, 1 (2002).

    Article  ADS  Google Scholar 

  4. T. Francke, Micropattern gaseous detectors, presented at the 42nd INFN ELOISATRON Project Workshop, Erice, Italy, September 2003, in Innovative detectors for supecolliders, edited by E. Nappi, J. Seguinot (World Scientific, Singapore, 2004) see also preprint/Physics/0404035 (2004).

  5. V. Peskov, Progress in micro-pattern gaseous detectors and their applications, in Proceedings of the 3rd International Workshop on Advances in sensors and Interfaces, 2009, IWASI 2009, (IEEE, 2009) p. 52, DOI:10.1109/IWASI.2009.5184767.

  6. P. Fonte et al., Nucl. Instrum. Methods A 443, 201 (2000).

    Article  ADS  Google Scholar 

  7. E. Cerron Zeballos et al., Nucl. Instrum. Methods A 374, 132 (1996).

    Article  ADS  Google Scholar 

  8. M. Alviggi et al., Nucl. Instrum. Methods A 515, 328 (2003).

    Article  ADS  Google Scholar 

  9. A. Bertolin et al., Nucl. Instrum. Methods A 661, S60 (2012).

    Article  ADS  Google Scholar 

  10. F. Anulli et al., Nucl. Instrum. Methods A 552, 276 (2005).

    Article  ADS  Google Scholar 

  11. Y. Hoshi et al., Nucl. Phys. B Proc. Suppl. 158, 190 (2006).

    Article  ADS  Google Scholar 

  12. P. Camarri, Nucl. Instrum. Methods A 602, 668 (2009).

    Article  ADS  Google Scholar 

  13. G. Barr et al., Nucl. Instrum. Methods A 533, 214 (2004).

    Article  ADS  Google Scholar 

  14. W.J. Llope, Nucl. Instrum. Methods A 661, S110 (2012).

    Article  ADS  Google Scholar 

  15. A. Schuttauf et al., Nucl. Phys. B Proc. Suppl. 158, 52 (2006).

    Article  ADS  Google Scholar 

  16. P. Paolucci et al., JINST 8, P04005 (2013).

    Article  ADS  Google Scholar 

  17. G. Aielli et al., JINST 8, P02020 (2013).

    ADS  Google Scholar 

  18. F. Bossu et al., JINST 7, T12002 (2012).

    Article  ADS  Google Scholar 

  19. A. Alici, JINST 7, P 10024 (2012).

    Article  ADS  Google Scholar 

  20. Blanco et al., JINST 8, P01004 (2013).

    Article  ADS  Google Scholar 

  21. V. Peskov, Proc. Sci. 2012, 083 (2012).

    Google Scholar 

  22. D. Gonzales-Diaz, arXiv:1206.2735 (2012).

  23. A. Oed, Nucl. Instrum. Methods A 263, 351 (1988).

    Article  ADS  Google Scholar 

  24. S.F. Biagi et al., Nucl. Instrum. Methods A 366, 76 (1995).

    Article  ADS  Google Scholar 

  25. I. Giomataris et al., Nucl. Instrum. Methods A 376, 29 (1996).

    Article  ADS  Google Scholar 

  26. T. Francke et al., Nucl. Instrum. Methods A 471, 85 (2001).

    Article  ADS  Google Scholar 

  27. I. Crotty et al., Nucl. Instrum. Methods A 505, 203 (2003).

    Article  ADS  Google Scholar 

  28. F. Bartol et al., J. Phys. III (France) 6, 337 (1996).

    Article  Google Scholar 

  29. F. Sauli, Nucl. Instrum. Methods A 386, 531 (1997).

    Article  ADS  Google Scholar 

  30. F. Sauli, Nucl. Instrum. Methods 477, 1 (2002).

    Article  ADS  Google Scholar 

  31. T. Zeuner et al., Nucl. Instrum. Methods A 446, 324 (2000).

    Article  ADS  Google Scholar 

  32. P. Abbon et al., Nucl. Instrum. Methods A 577, 455 (2007).

    Article  ADS  Google Scholar 

  33. G. Antchev et al., Nucl. Instrum. Methods A 617, 62 (2010).

    Article  ADS  Google Scholar 

  34. M. Alfonsi et al., Nucl. Instrum. Methods A 581, 283 (2007).

    Article  ADS  Google Scholar 

  35. S. Procureur et al., Nucl. Instrum. Methods A 659, 91 (2011).

    Article  ADS  Google Scholar 

  36. M. Alfonsi, CERN-LHCC-2008-011, LHC-P-001 (2008).

  37. R. Oliveira et al., Nucl. Instrum. Methods A 576, 362 (2007).

    Article  ADS  Google Scholar 

  38. R. Oliveira et al., IEEE Trans. Nucl. Sci. 57, 3744 (2010).

    Article  Google Scholar 

  39. Di Mauro et al., IEEE Conf. Rep. 6, 3852 (2006).

    Google Scholar 

  40. 2nd International Conference on Micro Pattern Gaseous Detectors, 2011, Kobe, Japan, Book of abstracts, http://ppwww.phys.sci.kobe-u.ac.jp/~upic/mpgd2011/Abstracts.pdf.

  41. A. Yoshikawa et al., JINST 7, C06006 (2012).

    Google Scholar 

  42. V. Peskov et al., Nucl. Instrum. Methods A 661, S153 (2012).

    Article  ADS  Google Scholar 

  43. V. Peskov et al., JINST 7, C01005 (2012).

    Article  Google Scholar 

  44. P. Fonte et al., JINST 7, P12003 (2012).

    Article  ADS  Google Scholar 

  45. A. Di Mauro et al., IEEE Trans. Nucl. Sci. 56, 1550 (2009).

    Article  ADS  Google Scholar 

  46. VHMPID: The very high momentum particle identification detector for ALICE, Letter of Intent (2008) https://twiki.cern.ch/twiki/bin/viewfile/Sandbox/VHMPIDLoI?rev=1;filename=vhmpidLOI_v07.pdf.

  47. P. Martinengo et al., Nucl. Instrum. Methods A 639, 126 (2011).

    Article  ADS  Google Scholar 

  48. V. Peskov et al., Nucl. Instrum. Methods A 695, 154 (2012).

    Article  ADS  Google Scholar 

  49. G. Charpak et al., Nucl. Instrum. Methods A 277, (1989) 537 (2011).

    Google Scholar 

  50. J. Seguinot et al., Nucl. Instrum. Methods A 297, 133 (1990).

    Article  ADS  Google Scholar 

  51. A. Aprile et al., Nucl. Instrum. Methods A 338, 328 (1994).

    Article  ADS  Google Scholar 

  52. A. Aprile et al., Nucl. Instrum. Methods A 343, 129 (1994).

    Article  ADS  Google Scholar 

  53. G. Charpak et al., IEEE Trans. Nucl. Sci. 55, 1657 (2008).

    Article  ADS  Google Scholar 

  54. G. Charpak et al., JINST 3, P02006 (2008).

    Article  ADS  Google Scholar 

  55. G. Charpak et al., Nucl. Instrum. Methods A 628, 187 (2011).

    Article  ADS  Google Scholar 

  56. G. Charpak, arXiv:1002.4732 (2010).

  57. V. Peskov, arXiv:0709.2819 (2007).

  58. G. Charpak et al., JINST 4, P12007 (2009).

    Article  ADS  Google Scholar 

  59. P. Martinenego, GEM application for safety and environmental applications (2012) http://knowledgetransfer.web.cern.ch/technology-transfer/ip-management/kt-fund/funded-projects.

  60. I. Crotty et al., Nucl. Instrum. Methods A 505, 203 (2003).

    Article  ADS  Google Scholar 

  61. T. Francke et al., Nucl. Instrum. Methods A 508, 83 (2003).

    Article  ADS  Google Scholar 

  62. T. Alexopoulos et al., Nucl. Instrum. Methods A 640, 110 (2011).

    Article  ADS  Google Scholar 

  63. A. Blanco et al., JINST 8, P01004 (2013).

    Article  ADS  Google Scholar 

  64. A. Blanco et al., JINST 7, P11012 (2012).

    Article  ADS  Google Scholar 

  65. M. Newcomer, http://www.hep.upenn.edu/HEP_website_09/Talks/Seminars/talks/2008_newcomer.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Peskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breuil, P., Fonte, P., Nappi, E. et al. Advances in the development of micropattern gaseous detectors with resistive electrodes. Eur. Phys. J. Plus 128, 160 (2013). https://doi.org/10.1140/epjp/i2013-13160-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13160-7

Keywords

Navigation