Advertisement

MHD unsteady squeezing flow over a porous stretching plate

  • T. Hayat
  • A. Qayyum
  • A. Alsaedi
Regular Article

Abstract

This article is concerned with the unsteady squeezing flow of non-Newtonian fluid between two parallel plates. A rheological equation of second grade fluid is used. The fluid is electrically conducting in the presence of a magnetic field. A transformation procedure reduces the partial differential equations into the ordinary differential equations. A series solution is developed using a modern mathematical scheme. The solution expressions for velocity components are computed and discussed. In addition, the skin friction coefficient is analyzed through tabulated values.

Keywords

Skin Friction Series Solution Lower Wall Homotopy Analysis Method Lower Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W.C. Tan, T. Masuoka, Int. J. Non-Linear Mech. 40, 515 (2005).ADSCrossRefMATHGoogle Scholar
  2. 2.
    Q. Haitao, X. Mingyu, Mech. Res. Commun. 34, 210 (2007).CrossRefMATHGoogle Scholar
  3. 3.
    C. Fetecau, C. Fetecau, M. Rana, Z. Naturforsch. A 66, 753 (2011).CrossRefGoogle Scholar
  4. 4.
    M. Jamil, A. Rauf, C. Fetecau, N.A. Khan, Commun. Nonlinear Sci. Num. Simulat. 16, 1959 (2011).ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    M. Nazar, C. Fetecau, D. Vieru, C. Fetecau, Nonlinear Anal. Real World Appl. 11, 584 (2010).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Y. Yao, Y. Liu, Nonlinear Anal. Real World Appl. 11, 4442 (2010).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    R. Ellahi, A. Zeeshan, Num. Methods Partial Differ. Equ. 27, 1231 (2011).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    S. Nadeem, A. Rehman, C. Lee, J. Lee, Math. Probl. Eng. 2012, 640289 (2012).MathSciNetGoogle Scholar
  9. 9.
    F. Ali, M. Norzieha, S. Sharidan, I. Khan, T. Hayat, Int. J. Non-Linear Mech. 47, 521 (2012).CrossRefGoogle Scholar
  10. 10.
    T. Hayat, A. Yousaf, M. Mustafa, S. Obaidat, Int. J. Numer. Methods Fluids 69, 399 (2012).ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    M. Khan, S.H. Ali, Q. Haitao, Math. Comput. Modell. 49, 1519 (2009).CrossRefMATHGoogle Scholar
  12. 12.
    C. Xue, J. Nie, Appl. Math. Modell. 33, 524 (2009).CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    M. Turkyilmazoglu, Comput. Fluids 70, 53 (2012).CrossRefMathSciNetGoogle Scholar
  14. 14.
    T. Hayat T, S. Iram, T. Javed, S. Asghar, Commun. Nonlinear Sci. Numer. Simulat. 15, 2932 (2010).ADSCrossRefMATHGoogle Scholar
  15. 15.
    T. Hayat, S.A. Shehzad, M. Qasim, S. Obaidat, Thermal Sci. 15, 253 (2011).CrossRefGoogle Scholar
  16. 16.
    M.J. Stefan, Akad. Wiss. Wien Math. Naturwiss. 69, 713 (1874).Google Scholar
  17. 17.
    W.E. Langlois, Q. Appl. Math. XX 20, 131 (1962).MATHGoogle Scholar
  18. 18.
    R.L. Verma, Wear 72, 89 (1981).CrossRefGoogle Scholar
  19. 19.
    E.A. Hamza, D.A. MacDonald, J. Fluid Mech. 109, 147 (1981).ADSCrossRefMATHGoogle Scholar
  20. 20.
    G. Domairry, A. Aziz, Math. Probl. Eng. 2009, 603916 (2009).CrossRefGoogle Scholar
  21. 21.
    T. Hayat, A. Yousuf, M. Mustafa, S. Obaidat, Int. J. Numer. Methods Fluids 69, 399 (2012).ADSCrossRefMATHGoogle Scholar
  22. 22.
    A. Qayyum, M. Awais, A. Alsaedi, T. Hayat, Chin. Phys. Lett. 29, 034701 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    M. Ramzan, M. Farooq, A. Alsaedi, T. Hayat, Eur. Phys. J. Plus 128, 49 (2013).CrossRefGoogle Scholar
  24. 24.
    T. Hayat, M. Mustafa, Z. Naturforsch. A 65, 711 (2010).Google Scholar
  25. 25.
    T. Hayat, A. Qayyum, F. Alsaadi, M. Awais, Abdullah M. Dobaie, Eur. Phys. J. Plus 128, 85 (2013).CrossRefGoogle Scholar
  26. 26.
    M.M. Rashidi, M.T. Rastegari, M. Asadi, O.A. Bég, Chem. Eng. Commun. 199, 231 (2012).CrossRefGoogle Scholar
  27. 27.
    S. Abbasbandy, M.S. Hashemi, I. Hashim, Quaestiones Mathematicae 36, 93 (2013).CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    S. Liao, Homotopy Analysis Method in Nonlinear Differential Equations (Springer & Higher Education Press, 2012).Google Scholar
  29. 29.
    M. Turkyilmazoglu, Appl. Math. Modell. 37, 7539 (2013).CrossRefMathSciNetGoogle Scholar
  30. 30.
    A. Lawal, D.M. Kalyon, Polym. Process. Sci. 38, 1793 (1998).Google Scholar
  31. 31.
    A. Ishak, R. Nazar, I. Pop, ASME J. Heat Transfer 129, 1087 (2007).CrossRefGoogle Scholar
  32. 32.
    S. Munawar, A. Mehmood, Asif Ali, Comput. Math. Appl. 64, 1575 (2012).CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    N. Bachok, A. Ishak, R. Nazar, Meccanica 46, 935 (2011).CrossRefMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-I-Azam University 45320IslamabadPakistan
  2. 2.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations