Traveling wave solutions of density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method

  • Emmanuel Kengne
  • Michel Saydé
  • Fathi Ben Hamouda
  • Ahmed Lakhssassi
Regular Article

Abstract.

Analytical entire traveling wave solutions to the 1+1 density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method are presented in this paper. This equation can be regarded as an extension case of the Fisher-Kolmogoroff equation, which is used for studying insect and animal dispersal with growth dynamics. The analytical solutions are then used to investigate the effect of equation parameters on the population distribution.

Keywords

Population Distribution Riccati Equation Travel Wave Solution Equation Parameter Nonlinear Evolution Equation 

References

  1. 1.
    R.J. Buratti, A.G. Lindgren, Proc. IEEE 56, 1392 (1968)CrossRefGoogle Scholar
  2. 2.
    A.M. Samsonov, V.V. Gursky, J. Phys. A: Math. Gen. 32, 6573 (1999)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    G.V. Dubrovskiy, V.V. Kozachek, J. Tech. Phys. 65, 124 (1995) (in Russian)Google Scholar
  4. 4.
    A.V. Bogdanov, G.V. Dubrovskiy, M.P. Krutikov, D.V. Kulginov, V.M. Strelchenya, Interactions of Gases with Surfaces (Springer-Verlag, Berlin, 1995)Google Scholar
  5. 5.
    J.D. Murray, Mathematical Biology (Springer-Verlag, Berlin, 1989)Google Scholar
  6. 6.
    J.M. Hill, A.J. Avagliano, M.P. Edwards, IMA J. Appl. Math. 48, 283 (1992)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    D.J. Arrigo, J.M. Hill, Stud. Appl. Math. 94, 21 (1995)MATHMathSciNetGoogle Scholar
  8. 8.
    J.R. King, Q. J. Mech. Appl. Math. 42, 537 (1989)CrossRefMATHGoogle Scholar
  9. 9.
    W.I. Newman, J. Theor. Biol. 85, 325 (1980)CrossRefGoogle Scholar
  10. 10.
    R.A. Fisher, Ann. Eugenics 7, 353 (1937)Google Scholar
  11. 11.
    R.L. Luther, Z. Elektrochem. Angew. Phys. Chem. 12, 506 (1906)Google Scholar
  12. 12.
    D.G. Aronson, H.F. Weinberger, Adv. Math. 30, 33 (1978)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    D.G. Aronson, H.F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, edited by J.A. Goldstein, Lect. Notes Math., Vol. 446 (Springer, Berlin, 1975) pp. 5--49Google Scholar
  14. 14.
    P.H. Pang, M.X. Wang, Proc. R. Soc. A, Edinburgh 133, 919 (2003)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    M. Al-Ghoul, B.C. Eu, Physica D 90, 119 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    K. Page, P.K. Maini, N.A.M Monk, Physica D 202, 95 (2005)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. Inst. Radio Eng. 50, 2061 (1962)Google Scholar
  18. 18.
    J. Nagumo, S. Yoshizawa, S. Arimoto, Trans. IEEE Circ. Theo. 12, 400 (1965)CrossRefGoogle Scholar
  19. 19.
    A.C. Scott, Proc. IEEE 51, 240 (1963)CrossRefGoogle Scholar
  20. 20.
    M. Gülnihal, World Acad. Sci. Engin. Technol. 41, 1178 (2010)Google Scholar
  21. 21.
    A.R. Mitchell, D.F. Griffiths, The Finite Difference Method in Partial Differential Equations (John Wiley and Sons, New York, 1980)Google Scholar
  22. 22.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Phys. Rev. Lett. 30, 1262 (1973)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967)ADSCrossRefGoogle Scholar
  24. 24.
    R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)ADSCrossRefMATHGoogle Scholar
  25. 25.
    N.A. Kudryashov. Analytical theory of nonlinear differential equations (Moscow-Izhevsk, Institute of Computer Investigations, 2004) (in Russian)Google Scholar
  26. 26.
    N.A. Kudryashov, Phys. Lett. A 169, 237 (1992)ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    N.A. Kudryashov, Phys. Lett. A 178, 99 (1993)ADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    N.A. Kudryashov, Chaos Solitons Fractals 24, 1217 (2005)ADSCrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    N.A. Kudryashov, N.B. Loginova, Appl. Math. Comput. 205, 396 (2008)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    N.K. Vitanov, Z.I. Dimitrova, H. Kantz, Appl. Math. Comput. 216, 2587 (2010)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    N.K. Vitanov, Commun. Nonlinear Sci. Numer. Simulat. 16, 1176 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    N.K. Vitanov, Commun. Nonlinear Sci. Numer. Simulat. 16, 4215 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Xinfu Chena, Jong-Shenq Guoa, Hirokazu Ninomiya, Proc. R. Soc. Edinburgh: Sect. A Math. 136, 1207 (2006)CrossRefGoogle Scholar
  34. 34.
    P.A. Clarkson, E.L. Mansfield, Nonclassical symmetry reductions and exact solutions of nonlinear reaction-diffusion equations, in Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, edited by P.A. Clarkson, Vol. 413 (Kluwer, Dordrecht, 1993) pp. 375--389Google Scholar
  35. 35.
    S.R. Chowdhury, Phys. Lett. A 159, 311 (1991)ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    J. Herrera, A. Minzoni, R. Ondarza, Phys. D. 57, 249 (1992)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    T. Kawahara, M. Tanaka, Phys. Lett. A 97, 311 (1983)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    E.V. Krishnan, J. Phys. Soc. Jpn. 63, 460 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    A. de Pablo, A. Sanchez, Eur. J. Appl. Math. 9, 285 (1998)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    E.V. Krishnan, J. Phys. Soc. Jpn. 63, 460 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    J. Satsuma, J. Phys. Soc. Jpn 56, 1947 (1987)ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    E. Kengne, R. Vaillancourt, Integra. Transforms Spec. Funct. 20, 701 (2009)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    N.K. Vitanov, Commun. Nonlinear Sci. Numer. Simulat. 15, 2050 (2010)ADSCrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    N.K. Vitanov, Z.I. Dimitrova, Commun. Nonlinear Sci. Numer. Simulat. 15, 2836 (2010)ADSCrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    N.K. Vitanov, I.P. Jordanov, Z.I. Dimitrova, Appl. Math. Comput. 215, 2950 (2009)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    N.K. Vitanov, I.P. Jordanov, Z.I. Dimitrova, Commun. Nonlinear Sci. Numer. Simulat. 14, 2379 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    S. Zhu, Chaos Solitons Fractals 37, 1335 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    H. Naher, F.A. Abdullah, Appl. Math. Sci. 6, 5495 (2012)MATHMathSciNetGoogle Scholar
  49. 49.
    Ph. Hartman, Ordinary differential equations (John Wiley, New York, 1964)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emmanuel Kengne
    • 1
  • Michel Saydé
    • 1
  • Fathi Ben Hamouda
    • 1
  • Ahmed Lakhssassi
    • 1
  1. 1.Département d’informatique et d’ingénierieUniversité du Québec en OutaouaisGatineauCanada

Personalised recommendations