Advertisement

Wind over Terra Nova Bay (Antarctica) during a polynya event: Eta model simulations and satellite microwave observations

Regular Article

Abstract.

A study of Terra Nova Bay (TNB) winter polynya, based on the combined use of satellite observations and limited area model simulations, is presented. First, data from passive microwave observations are used to investigate the polynya area daily variability. Second, the Eta model is run to simulate the low-level wind over a defined TNB polynya, located in according to the satellite images, during the period 15-17 September 2003. A preliminary set up of initial and boundary conditions is used. The Eta model is initialized with the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses, with the National Centers for Environmental Prediction (NCEP) of the U.S. National Weather Service data and with information from satellite images providing a realistic extension of the polynya under study. The Eta model simulates a katabatic wind system which develops qualitatively in agreement with the polynya extent, as shown in the satellite images during the same period. The results demonstrate the strong effect of the polynya when included in the initialization of model integrations: the low-level wind is intensified by the presence of the warm area corresponding to the polynya, it is spatially variable and significantly different from one simulated along the coast of the Nansen Ice Sheet. The results of numerical simulations with different surface temperatures in the polynya area are shown as well, thus an assessment of the range of variability of the wind intensity in relation to the polynya surface temperature is provided.

Keywords

Katabatic Wind Coastal Polynya Advanced Synthetic Aperture Radar Polynya Area Advanced Synthetic Aperture Radar Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.H. Bromwich, D.D. Kurtz, J. Geophys. Res. 89, 3561 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    S.D. Smith, R.D. Muench, C.H. Pease, J. Geophys. Res. 95, 9461 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    M. Van Woert, J. Geophys. Res. 104, 7753 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    F. Parmiggiani, Int. J. Remote Sensing 27, 2459 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    E.K. Fiedler et al., J. Geophys. Res. 115, C10051 (2010) DOI:10.1029/2009JC005797 ADSCrossRefGoogle Scholar
  6. 6.
    S. Morelli, Meteor. Atmos. Phys. 114, 67 (2011) DOI:10.1007/s00703-011-0157.5 CrossRefGoogle Scholar
  7. 7.
    S. Morelli, F. Parmiggiani, Eta Model Simulations and AMSR Images to Study an Event of Polynya at Terra Nova Bay, Antarctica, in Climate Change. Inferences from Paleoclimate and Regional Aspects, edited by A. Berger, F. Mesinger, D. Sijacki (Springer Verlag, Wien, 2012) pp. 215--225 DOI:10.1007/978-3-7091-0973-1_16
  8. 8.
    H. Gallée, J. Geophys. Res. 102, 13835 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    R.A. Dare, B.W. Atkinson, J. Geophys. Res. 104, 16691 (1999) DOI:10.1029/1999JD900137 ADSCrossRefGoogle Scholar
  10. 10.
    R.A. Dare, B.W. Atkinson, Boundary-Layer Meteorol. 94, 65 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    G. Heinemann, Forcing and feedback mechanisms between the katabatic wind and sea ice in the coastal areas of polar ice sheets, in The Global Atmosphere and Ocean System, Vol. 9, n. 4 (Taylor & Francis Ltd., 2003) p. 169Google Scholar
  12. 12.
    D.D. Kurtz, D.H. Bromwich, A recurring atmospherically forced polynya in Terra Nova Bay, in Oceanology of the Antarctic Continental Shelf, edited by S.S. Jacobs, in Antarctic. Res. Ser., Vol. 43 (AGU, Washington, D.C., 1985) pp. 177--201 DOI:10.1029/AR043p0177
  13. 13.
    D. Cesini, S. Morelli, F. Parmiggiani, Nat. Hazards Earth Syst. Sci. 4, 323 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    M. Stortini, S. Morelli, S. Marchesi, Nuovo Cimento C 23, 147 (2000)ADSGoogle Scholar
  15. 15.
    F. Parmiggiani, A first experiment of real near time (NRT) processing of ENVISAT/ASAR images to assist ship routing in Antarctica, ENVISAT/ERS Symposium, Salzburg, 6--10 Sep. 2004 (Abstract n. 12)Google Scholar
  16. 16.
    A. Hauser, M. Lythe, G. Wendler, Atmosphere Ocean 40, 281 (2002)CrossRefGoogle Scholar
  17. 17.
    L. Kaleschke et al., Can. J. Remote Sensing 27, 526 (2001)Google Scholar
  18. 18.
    T. Markus, D.J. Cavalieri, IEEE Trans. Geosci. Remote Sensing 38, 1387 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    G. Spreen, L. Kaleschke, G. Heygster, J. Geophys. Res. 113, C02S03 (2008) DOI:10.1029/2005JC003384 ADSGoogle Scholar
  20. 20.
    M.B. Ek et al., J. Geophys. Res. 108, 8851 (2003) DOI:10.1029/2002/D003296 CrossRefGoogle Scholar
  21. 21.
    F. Mesinger et al., Mon. Wea. Rev. 116, 1493 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    F. Mesinger, T.L. Black, Meteor. Atmos. Phys. 50, 47 (1992)CrossRefGoogle Scholar
  23. 23.
    M. Georgelin et al., Mon. Wea. Rev. 122, 1509 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    F. Mesinger, R.L. Wobus, M.E. Baldwin, Parameterization of form drag in the Eta Model at the National Centers for Environmental Prediction, in 11th Conference on Numerical Weather Prediction, Norfolk, VA, (American Meteorological Society, 1996) pp. 324-326Google Scholar
  25. 25.
    C.A. Paulson, J. Appl. Meteor. 9, 857 (1970)ADSCrossRefGoogle Scholar
  26. 26.
    L. Lobocki, J. Appl. Meteor. 32, 126 (1993)CrossRefGoogle Scholar
  27. 27.
    H. Charnok, Quart. J. R. Meteor. Soc. 81, 639 (1955)ADSCrossRefGoogle Scholar
  28. 28.
    S.S. Zilitinkevich, Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows, in Air Pollution III. Air Pollution Theory and Simulation, edited by H. Power, N. Moussiopoulos, C.A. Brebbia, Vol. I (Computational Mechanics Publications, Southampton, Boston, 1995) pp. 53-60Google Scholar
  29. 29.
    G.L. Mellor, T. Yamada, Rev. Geophys. Space Phys. 20, 851 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    Z.J. Janjic, The Mellor Yamada level 2.5 turbulence closure scheme in the NCEP Eta Model, in Research Activities in Atmospheric and Oceanic Modelling (WMO, Geneva, CAS/WGNE, 1996) pp. 4.14-4.15Google Scholar
  31. 31.
    Z.J. Janjic, NCEP Office Note No. 437 (2002)Google Scholar
  32. 32.
    F. Mesinger, IOP Conf. Ser.: Earth Environ. Sci. 13, 012005 (2010) DOI:10.1088/1755-1315/13/1/012005 ADSCrossRefGoogle Scholar
  33. 33.
    F. Chen et al., J. Geophys. Res. 101, 7251 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    V. Koren et al., J. Geophys. Res. 104, 19569 (1999) DOI:10.1029/1999JD900232 ADSCrossRefGoogle Scholar
  35. 35.
    A.A. Lacis, J.E. Hansen, J. Atmos. Sci. 31, 118 (1974)ADSCrossRefGoogle Scholar
  36. 36.
    S.B. Fels, M.D. Schwarzkopf, J. Atmos. Sci. 32, 1475 (1975)ADSCrossRefGoogle Scholar
  37. 37.
    M.D. Schwarzkopf, S.B. Fels, J. Geophys. Res. 96, 9075 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    A.K. Betts, M.J. Miller, Quart. J. R. Meteor. Soc. 112, 693 (1986)ADSGoogle Scholar
  39. 39.
    Z.J. Janjic, Mon. Wea. Rev. 122, 927 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    B.S. Ferrier, Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta Model, in 19th Conference on Weather Analysis and Forecasting/15th Conference on Numerical Weather Prediction, San Antonio, TX (American Meteorological Society, 2002)Google Scholar
  41. 41.
    T. Markus, A. Burns, J. Geophys. Res. 100, 4473 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    H.J. Zwally, NASA Spec. Publ. 459, NASA Goddard Space Flight Center, Greenbelt, MD (1983)Google Scholar
  43. 43.
    T. Ishikawa et al., J. Oceanograp. 52, 389 (1996)CrossRefGoogle Scholar
  44. 44.
    C.C. Comiso, D.J. Cavalieri, T. Markus, IEEE Trans. Geosci. Remote Sensing 41, 243 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    R. Kwok, J.C. Comiso, S. Martin, R. Drucker, J. Geophys. Res. 112, C12012 (2007) DOI:10.1029/2006JC003967 ADSCrossRefGoogle Scholar
  46. 46.
    S. Kern, Geophys. Res. Lett. 36, L14501 (2009) DOI:10.1029/2009GL038062 ADSCrossRefGoogle Scholar
  47. 47.
    M. Shokr, K. Asmus, T.A. Agnew, IEEE Trans. Geosci. Remote Sensing 47, 325 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    T. Hollands, W. Dierking, Proceedings of ESA Living Planet Symposium, Edinburgh, UK, 2013, edited by Y.L. Desnos,in pressGoogle Scholar
  49. 49.
    Adams et al., Polar Res. 30, 7124 (2011) DOI:10.3402/polar.v30i0.7124 CrossRefGoogle Scholar
  50. 50.
    D.H. Bromwich, J.F. Carrasco, C.R. Stearns, Mon. Wea. Rev. 120, 1940 (1992)ADSCrossRefGoogle Scholar
  51. 51.
    D.H. Bromwich et al., J. Geophys. Res. 98, 13045 (1993) DOI:10.1029/93JD00562 ADSCrossRefGoogle Scholar
  52. 52.
    H. Hebbingaus, H. Schlunzen, S. Dierer, Theor. Appl. Climatol. 88, 1 (2007) DOI:10.1007/s00704-006-0233-9 ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dip. di Scienze Fisiche, Informatiche e MatematicheUniversità di Modena e Reggio EmiliaModenaItalia
  2. 2.ISAC-CNRBolognaItalia

Personalised recommendations