Skip to main content
Log in

Wind over Terra Nova Bay (Antarctica) during a polynya event: Eta model simulations and satellite microwave observations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A study of Terra Nova Bay (TNB) winter polynya, based on the combined use of satellite observations and limited area model simulations, is presented. First, data from passive microwave observations are used to investigate the polynya area daily variability. Second, the Eta model is run to simulate the low-level wind over a defined TNB polynya, located in according to the satellite images, during the period 15-17 September 2003. A preliminary set up of initial and boundary conditions is used. The Eta model is initialized with the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses, with the National Centers for Environmental Prediction (NCEP) of the U.S. National Weather Service data and with information from satellite images providing a realistic extension of the polynya under study. The Eta model simulates a katabatic wind system which develops qualitatively in agreement with the polynya extent, as shown in the satellite images during the same period. The results demonstrate the strong effect of the polynya when included in the initialization of model integrations: the low-level wind is intensified by the presence of the warm area corresponding to the polynya, it is spatially variable and significantly different from one simulated along the coast of the Nansen Ice Sheet. The results of numerical simulations with different surface temperatures in the polynya area are shown as well, thus an assessment of the range of variability of the wind intensity in relation to the polynya surface temperature is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.H. Bromwich, D.D. Kurtz, J. Geophys. Res. 89, 3561 (1984)

    Article  ADS  Google Scholar 

  2. S.D. Smith, R.D. Muench, C.H. Pease, J. Geophys. Res. 95, 9461 (1990)

    Article  ADS  Google Scholar 

  3. M. Van Woert, J. Geophys. Res. 104, 7753 (1999)

    Article  ADS  Google Scholar 

  4. F. Parmiggiani, Int. J. Remote Sensing 27, 2459 (2006)

    Article  ADS  Google Scholar 

  5. E.K. Fiedler et al., J. Geophys. Res. 115, C10051 (2010) DOI:10.1029/2009JC005797

    Article  ADS  Google Scholar 

  6. S. Morelli, Meteor. Atmos. Phys. 114, 67 (2011) DOI:10.1007/s00703-011-0157.5

    Article  Google Scholar 

  7. S. Morelli, F. Parmiggiani, Eta Model Simulations and AMSR Images to Study an Event of Polynya at Terra Nova Bay, Antarctica, in Climate Change. Inferences from Paleoclimate and Regional Aspects, edited by A. Berger, F. Mesinger, D. Sijacki (Springer Verlag, Wien, 2012) pp. 215--225 DOI:10.1007/978-3-7091-0973-1_16

  8. H. Gallée, J. Geophys. Res. 102, 13835 (1997)

    Article  ADS  Google Scholar 

  9. R.A. Dare, B.W. Atkinson, J. Geophys. Res. 104, 16691 (1999) DOI:10.1029/1999JD900137

    Article  ADS  Google Scholar 

  10. R.A. Dare, B.W. Atkinson, Boundary-Layer Meteorol. 94, 65 (2000)

    Article  ADS  Google Scholar 

  11. G. Heinemann, Forcing and feedback mechanisms between the katabatic wind and sea ice in the coastal areas of polar ice sheets, in The Global Atmosphere and Ocean System, Vol. 9, n. 4 (Taylor & Francis Ltd., 2003) p. 169

  12. D.D. Kurtz, D.H. Bromwich, A recurring atmospherically forced polynya in Terra Nova Bay, in Oceanology of the Antarctic Continental Shelf, edited by S.S. Jacobs, in Antarctic. Res. Ser., Vol. 43 (AGU, Washington, D.C., 1985) pp. 177--201 DOI:10.1029/AR043p0177

  13. D. Cesini, S. Morelli, F. Parmiggiani, Nat. Hazards Earth Syst. Sci. 4, 323 (2004)

    Article  ADS  Google Scholar 

  14. M. Stortini, S. Morelli, S. Marchesi, Nuovo Cimento C 23, 147 (2000)

    ADS  Google Scholar 

  15. F. Parmiggiani, A first experiment of real near time (NRT) processing of ENVISAT/ASAR images to assist ship routing in Antarctica, ENVISAT/ERS Symposium, Salzburg, 6--10 Sep. 2004 (Abstract n. 12)

  16. A. Hauser, M. Lythe, G. Wendler, Atmosphere Ocean 40, 281 (2002)

    Article  Google Scholar 

  17. L. Kaleschke et al., Can. J. Remote Sensing 27, 526 (2001)

    Google Scholar 

  18. T. Markus, D.J. Cavalieri, IEEE Trans. Geosci. Remote Sensing 38, 1387 (2000)

    Article  ADS  Google Scholar 

  19. G. Spreen, L. Kaleschke, G. Heygster, J. Geophys. Res. 113, C02S03 (2008) DOI:10.1029/2005JC003384

    ADS  Google Scholar 

  20. M.B. Ek et al., J. Geophys. Res. 108, 8851 (2003) DOI:10.1029/2002/D003296

    Article  Google Scholar 

  21. F. Mesinger et al., Mon. Wea. Rev. 116, 1493 (1988)

    Article  ADS  Google Scholar 

  22. F. Mesinger, T.L. Black, Meteor. Atmos. Phys. 50, 47 (1992)

    Article  Google Scholar 

  23. M. Georgelin et al., Mon. Wea. Rev. 122, 1509 (1994)

    Article  ADS  Google Scholar 

  24. F. Mesinger, R.L. Wobus, M.E. Baldwin, Parameterization of form drag in the Eta Model at the National Centers for Environmental Prediction, in 11th Conference on Numerical Weather Prediction, Norfolk, VA, (American Meteorological Society, 1996) pp. 324-326

  25. C.A. Paulson, J. Appl. Meteor. 9, 857 (1970)

    Article  ADS  Google Scholar 

  26. L. Lobocki, J. Appl. Meteor. 32, 126 (1993)

    Article  Google Scholar 

  27. H. Charnok, Quart. J. R. Meteor. Soc. 81, 639 (1955)

    Article  ADS  Google Scholar 

  28. S.S. Zilitinkevich, Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows, in Air Pollution III. Air Pollution Theory and Simulation, edited by H. Power, N. Moussiopoulos, C.A. Brebbia, Vol. I (Computational Mechanics Publications, Southampton, Boston, 1995) pp. 53-60

  29. G.L. Mellor, T. Yamada, Rev. Geophys. Space Phys. 20, 851 (1982)

    Article  ADS  Google Scholar 

  30. Z.J. Janjic, The Mellor Yamada level 2.5 turbulence closure scheme in the NCEP Eta Model, in Research Activities in Atmospheric and Oceanic Modelling (WMO, Geneva, CAS/WGNE, 1996) pp. 4.14-4.15

  31. Z.J. Janjic, NCEP Office Note No. 437 (2002)

  32. F. Mesinger, IOP Conf. Ser.: Earth Environ. Sci. 13, 012005 (2010) DOI:10.1088/1755-1315/13/1/012005

    Article  ADS  Google Scholar 

  33. F. Chen et al., J. Geophys. Res. 101, 7251 (1996)

    Article  ADS  Google Scholar 

  34. V. Koren et al., J. Geophys. Res. 104, 19569 (1999) DOI:10.1029/1999JD900232

    Article  ADS  Google Scholar 

  35. A.A. Lacis, J.E. Hansen, J. Atmos. Sci. 31, 118 (1974)

    Article  ADS  Google Scholar 

  36. S.B. Fels, M.D. Schwarzkopf, J. Atmos. Sci. 32, 1475 (1975)

    Article  ADS  Google Scholar 

  37. M.D. Schwarzkopf, S.B. Fels, J. Geophys. Res. 96, 9075 (1991)

    Article  ADS  Google Scholar 

  38. A.K. Betts, M.J. Miller, Quart. J. R. Meteor. Soc. 112, 693 (1986)

    ADS  Google Scholar 

  39. Z.J. Janjic, Mon. Wea. Rev. 122, 927 (1994)

    Article  ADS  Google Scholar 

  40. B.S. Ferrier, Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta Model, in 19th Conference on Weather Analysis and Forecasting/15th Conference on Numerical Weather Prediction, San Antonio, TX (American Meteorological Society, 2002)

  41. T. Markus, A. Burns, J. Geophys. Res. 100, 4473 (1995)

    Article  ADS  Google Scholar 

  42. H.J. Zwally, NASA Spec. Publ. 459, NASA Goddard Space Flight Center, Greenbelt, MD (1983)

  43. T. Ishikawa et al., J. Oceanograp. 52, 389 (1996)

    Article  Google Scholar 

  44. C.C. Comiso, D.J. Cavalieri, T. Markus, IEEE Trans. Geosci. Remote Sensing 41, 243 (2003)

    Article  ADS  Google Scholar 

  45. R. Kwok, J.C. Comiso, S. Martin, R. Drucker, J. Geophys. Res. 112, C12012 (2007) DOI:10.1029/2006JC003967

    Article  ADS  Google Scholar 

  46. S. Kern, Geophys. Res. Lett. 36, L14501 (2009) DOI:10.1029/2009GL038062

    Article  ADS  Google Scholar 

  47. M. Shokr, K. Asmus, T.A. Agnew, IEEE Trans. Geosci. Remote Sensing 47, 325 (2009)

    Article  ADS  Google Scholar 

  48. T. Hollands, W. Dierking, Proceedings of ESA Living Planet Symposium, Edinburgh, UK, 2013, edited by Y.L. Desnos,in press

  49. Adams et al., Polar Res. 30, 7124 (2011) DOI:10.3402/polar.v30i0.7124

    Article  Google Scholar 

  50. D.H. Bromwich, J.F. Carrasco, C.R. Stearns, Mon. Wea. Rev. 120, 1940 (1992)

    Article  ADS  Google Scholar 

  51. D.H. Bromwich et al., J. Geophys. Res. 98, 13045 (1993) DOI:10.1029/93JD00562

    Article  ADS  Google Scholar 

  52. H. Hebbingaus, H. Schlunzen, S. Dierer, Theor. Appl. Climatol. 88, 1 (2007) DOI:10.1007/s00704-006-0233-9

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Morelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morelli, S., Parmiggiani, F. Wind over Terra Nova Bay (Antarctica) during a polynya event: Eta model simulations and satellite microwave observations. Eur. Phys. J. Plus 128, 135 (2013). https://doi.org/10.1140/epjp/i2013-13135-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13135-8

Keywords

Navigation