Advertisement

Several energy-momentum-stress balance equations deduced from Maxwell's equations in material media. Non-covariant and explicitly covariant formulation

  • J. L. Jiménez
  • I. Campos
  • M. A. López-Mariño
Regular Article

Abstract

In the present article we propose an explicitly covariant formulation of several energy-momentum-stress balance equations, involving different force densities, deduced from the macroscopic Maxwell equations. These force densities depend on how Maxwell's equations are written in terms of the electromagnetic fields E, H, D, and B, and the polarizations P and M. We find that several energy-momentum-stress tensors are involved in these balance equations. The three tensors implied by these balance equations result symmetrical. In this way the old A-M controversy can be seen under a new light.

Keywords

Balance Equation Maxwell Equation Energy Balance Equation Force Density Momentum Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.L. Jiménez, I. Campos, M.A. López-Mariño, Eur. Phys. J. Plus 126, 50 (2011) DOI:10.1140/epjp/i2011-11050-8.CrossRefGoogle Scholar
  2. 2.
    J.L. Jiménez, I. Campos, M.A. López-Mariño, Eur. Phys. J. Plus 128, 46 (2013) DOI:10.1140/epjp/i2013-13046-8.CrossRefGoogle Scholar
  3. 3.
    A. Einstein, J. Laub, Ann. Phys. 331, 532 (1908) (the English translation of this paper appears in Einstein's Collected Papers.CrossRefGoogle Scholar
  4. 4.
    S.M. Barnett, Trans. R. Soc. A 368, 927 (2010) DOI:10.1098/rsta.2009.0207.ADSCrossRefMATHGoogle Scholar
  5. 5.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevski, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984).Google Scholar
  6. 6.
    C. Møller, The Theory of Relativity (Oxford, London, 1972).Google Scholar
  7. 7.
    W. Pauli, Theory of Relativity (Pergamon, London, 1958) translated from Encyklopedia der Mathematischen Wissenschaften, Vol. V19 (Tuebner, Leipzig, 1921) with supplementary notes by the author (1956).Google Scholar
  8. 8.
    M.A. López-Mariño, J.L. Jiménez, Found. Phys. Lett. 17, 1 (2004).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    J.L. Jiménez, I. Campos, M.A. López-Mariño, Eur. J. Phys. 32, 739 (2011).CrossRefMATHGoogle Scholar
  10. 10.
    M.A. López-Mariño, J.L. Jimenez, I. Campos, Nuovo Cimento B 125, 361 (2010).Google Scholar
  11. 11.
    H.M. Lai, W.M. Suen, K. Young, Phys. Rev. A 25, 1755 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    S. Coleman, J.H. Van Vleck, Phys. Rev. 171, 1370 (1968).ADSCrossRefGoogle Scholar
  13. 13.
    O. Costa de Beauregard, Phys. Lett. A 24, 177 (1967).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Aharonov, P. Pearle, L. Vaidman, Phys. Rev. A 37, 4052 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    L. Veidman, Am. J. Phys. 58, 978 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).Google Scholar
  17. 17.
    J.L. Jiménez, I. Campos, The Balance of Energy and Momentum in Classical Electrodynamics in Advanced Electromagnetism: Foundations, Theory and Applications, edited by T. Barret, D. Grimes (World Scientific, New Jersey, 1995).Google Scholar
  18. 18.
    M. Mansuripur, Phys. Rev. Lett. 108, 193901 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    F.N.H. Robinson, Phys. Rep. C 16, 313 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    W. Schockley, R.P. James, Phys. Rev. Lett. 18, 876 (1967).ADSCrossRefGoogle Scholar
  21. 21.
    J.L. Anderson Principles of relativity physics (Academic Press, New York, 1967).Google Scholar
  22. 22.
    W.K.H. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, MA, 1962).Google Scholar
  23. 23.
    I. Campos, J.L. Jiménez, M.A. López Mariño, J. Phys. Sci. Appl. 2, 4 (2012).Google Scholar
  24. 24.
    I. Campos, J.L. Jiménez, M.A. López Mariño, Rev. Bras. Ens. Fis. 34, 2303 (2012).Google Scholar
  25. 25.
    P.A.M. Dirac, Phys. Rev. 74, 817 (1948).ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    N. Cabbibo, Nuovo Cimento 23, 1147 (1962).CrossRefGoogle Scholar
  27. 27.
    F. Rohrlich, Phys. Rev. 150, 1104 (1966).ADSCrossRefGoogle Scholar
  28. 28.
    S.M. Barnett, Phys. Rev. Lett. 104, 070401 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. L. Jiménez
    • 1
  • I. Campos
    • 2
  • M. A. López-Mariño
    • 3
  1. 1.Departamento de Física, División de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana, IztapalapaMéxico D. F.Mexico
  2. 2.Departamento de Física, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMéxico D. F.Mexico
  3. 3.Departamento de IngenieríaTecnológico de Monterrey, Campus Central de VeracruzVeracruzMexico

Personalised recommendations