Conformally flat spherically symmetric spacetimes

Regular Article

Abstract

We deduce a simple expression for the Kretschmann curvature scalar of a conformally flat spacetime with a perfect fluid. Conformally flat, static, spherically symmetric spacetimes are investigated in various coordinate systems. The equation for a vanishing Weyl tensor and Einstein's field equations are integrated in curvature coordinates. We find conformally flat generalizations of the de Sitter spacetime and give new analyses of the internal Schwarzschild spacetime and texture-dominated spacetimes. The spacetimes are described in curvature coordinates, isotropic coordinates and in conformally flat spacetime coordinates.

Keywords

Curvature Scalar Line Element Weyl Tensor Einstein Tensor Symmetric Spacetimes 

References

  1. 1.
    Øyvind Grøn, S. Johannesen, Eur. Phys. J. Plus 126, 28 (2011).CrossRefGoogle Scholar
  2. 2.
    Øyvind Grøn, S. Johannesen, Eur. Phys. J. Plus 126, 29 (2011).CrossRefGoogle Scholar
  3. 3.
    Øyvind Grøn, S. Johannesen, Eur. Phys. J. Plus 126, 30 (2011).CrossRefGoogle Scholar
  4. 4.
    T. Levi-Civita, Red. Reale Accad. Lincei 26, 519 (1917).MATHGoogle Scholar
  5. 5.
    T. Levi-Civita, Gen. Relativ. Gravit. 43, 2307 (2011).CrossRefMATHMathSciNetADSGoogle Scholar
  6. 6.
    B. Bertotti, Phys. Rev. 116, 1331 (1959).CrossRefMATHMathSciNetADSGoogle Scholar
  7. 7.
    I. Robinson, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. 7, 351 (1959).MATHGoogle Scholar
  8. 8.
    D. Lovelock, Commun. Math. Phys. 5, 205 (1967).CrossRefMATHMathSciNetADSGoogle Scholar
  9. 9.
    D. Lovelock, Commun. Math. Phys. 5, 257 (1967).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    P. Dolan, Commun. Math. Phys. 9, 161 (1968).CrossRefMATHMathSciNetADSGoogle Scholar
  11. 11.
    Øyvind Grøn, S. Johannesen, Eur. Phys. J. Plus 126, 89 (2011).CrossRefGoogle Scholar
  12. 12.
    J.B. Griffith, J. Podolský, Exact Space-Times in Einstein's General Relativity (Cambridge University Press, 2009) sect. 7.1.Google Scholar
  13. 13.
    H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein's Field Equations (Cambridge University Press, 2009).Google Scholar
  14. 14.
    M. Ortaggio, Phys. Rev. D 65, 084046 (2002).CrossRefADSGoogle Scholar
  15. 15.
    M. Ortaggio, J. Podolský, Class. Quantum Grav. 19, 5221 (2002).CrossRefMATHADSGoogle Scholar
  16. 16.
    J. Podolský, M. Ortaggio, Class. Quantum Grav. 20, 1685 (2003).CrossRefMATHADSGoogle Scholar
  17. 17.
    Øyvind Grøn, S. Johannesen, Eur. Phys. J. Plus 128, 43 (2013).CrossRefGoogle Scholar
  18. 18.
    A. Banerjee, M.M. Som, Int. J. Theor. Phys. 20, 349 (1981).CrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Stephani, Commun. Math. Phys. 4, 137 (1967).CrossRefMATHMathSciNetADSGoogle Scholar
  20. 20.
    S.N. Pandey, R. Tiwari, Indian J. Pure Appl. Math. 12, 261 (1981).MATHMathSciNetGoogle Scholar
  21. 21.
    A. Melfo, H. Rago, Astrophys. Space Sci. 193, 9 (1992).CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    A. Banerjee, N.O. Santos, J. Math. Phys. 22, 824 (1981).CrossRefMATHMathSciNetADSGoogle Scholar
  23. 23.
    M. Gürses, Y. Gürsey, Nuovo Cimento B 25, 786 (1975).CrossRefADSGoogle Scholar
  24. 24.
    Z. Stuchlik, Acta Phys. Slov. 50, 210 (2000).Google Scholar
  25. 25.
    Øyvind Grøn, Phys. Rev. 31, 2129 (1985).CrossRefADSGoogle Scholar
  26. 26.
    N. Dadhich, K. Narayan, IUCAA-32/97 (1997).Google Scholar
  27. 27.
    . Grøn, S. Hervik, Einstein's General Theory of Relativity (Springer, 2007) eq. (11.51).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of EngineeringOslo University CollegeOsloNorway

Personalised recommendations