The light and strange baryon spectrum in a non-relativistic hypercentral quark potential model and algebraic framework

  • Nasrin Salehi
  • Hassan Hassanabadi
  • Ali Akbar Rajabi
Regular Article


In this paper, we studied the baryon resonances spectrum within a non-relativistically quark model using a simple approach based on the Gürsey-Radicati mass formula (GR). The average energy value of each SU(6) multiplet is described using the SU(6) invariant interaction given by a hypercentral potential. In this paper the hypercentral potential is composed of four components: the oscillatory potential, color charge, the intraction quark and neutral gluon and the dipole-dipole electromagnetic interaction. The results of our model (the combination of our proposed hypercentral potential and the generalized GR mass formula to the description of the spectrum) show that the light and strange baryons spectrum are in general fairly well reproduced. The overall good description of the spectrum which we obtain shows that our model can also be used to give a fair description of the energies of the excited multiplets with more than 2GeV mass and negative-parity resonance.


Casimir Operator Mass Formula Baryon Resonance Baryon Spectrum Experimental Mass Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Bijker, F. Iachello, A. Leviatan, Ann. Phys. (N.Y.) 236, 69 (1994)CrossRefADSGoogle Scholar
  2. 2.
    M. Aiello, M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, Phys. Lett. B 387, 215 (1996)CrossRefADSGoogle Scholar
  3. 3.
    Z. Dziembowski, M. Fabre de la Ripelle, Gerald A. Miller, Phys. Rev. C 53, R2038 (1996)CrossRefADSGoogle Scholar
  4. 4.
    M. Benmerrouche, N.C. Mukhopadhyay, J.-F. Zhang, Phys. Rev. Lett. 77, 4716 (1996)CrossRefADSGoogle Scholar
  5. 5.
    B. Chakrabarti, A. Bhattacharya, S. Mani, A. Sagari, Acta Phys. Pol. B 41, 95 (2010)Google Scholar
  6. 6.
    N. Isgur, G. Karl, Phys. Rev. D 20, 1191 (1979)CrossRefADSGoogle Scholar
  7. 7.
    M.M. Giannini, Rep. Prog. Phys. 54, 453 (1991)CrossRefADSGoogle Scholar
  8. 8.
    Gunnar S. Bali et al., Phys. Rev. D 62, 054503 (2000)CrossRefADSGoogle Scholar
  9. 9.
    Gunnar S. Bali, Phys. Rep. 343, 1 (2001)CrossRefADSMATHGoogle Scholar
  10. 10.
    C. Alexandrou, P. de Forcrand, O. Jahn, Nucl. Phys. Proc. Suppl. 119, 667 (2003)CrossRefADSGoogle Scholar
  11. 11.
    M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys. Lett. B 364, 231 (1995)CrossRefADSGoogle Scholar
  12. 12.
    E. Santopinto, F. Iachello, M.M. Giannini, Eur. Phys. J. A 1, 307 (1998)CrossRefADSGoogle Scholar
  13. 13.
    L.Ya. Glozman, D.O. Riska, Phys. Rep. C 268, 263 (1996)CrossRefADSGoogle Scholar
  14. 14.
    M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 12, 447 (2001)CrossRefADSGoogle Scholar
  15. 15.
    F. Gürsey, L.A. Radicati, Phys. Rev. Lett. 13, 173 (1964)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 25, 241 (2005)CrossRefADSGoogle Scholar
  17. 17.
    N. Salehi, A.A. Rajabi, Mod. Phys. Lett. A 24, 2631 (2009)CrossRefADSMATHGoogle Scholar
  18. 18.
    A.A. Rajabi, Few-Body Sys. 37, 197 (2005)CrossRefADSGoogle Scholar
  19. 19.
    H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Ann. Phys. (Berlin) 523, 566 (2011)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, A.A. Rajabi, Phys. Rev. C 84, 064003 (2011)CrossRefADSGoogle Scholar
  21. 21.
    H. Hassanabadi, Commun. Theor. Phys. 55, 303 (2011)MathSciNetCrossRefADSMATHGoogle Scholar
  22. 22.
    E. Santopinto, M.M. Giannini, F. Iachello in Symmetries in Science VII, edited by B. Gruber (Plenum Press, New York, 1995) p. 445CrossRefGoogle Scholar
  23. 23.
    S. Bali et al., Phys. Rev. D 62, 054503 (2000)CrossRefADSGoogle Scholar
  24. 24.
    S.H. Dong, Phys. Scr. 64, 273 (2001)CrossRefADSMATHGoogle Scholar
  25. 25.
    J. Ballot, Fabre de la Ripelle, Ann. Phys. (N.Y.) 127, 62 (1980)CrossRefADSGoogle Scholar
  26. 26.
    M.V.N. Murthy, Z. Phys. C 31, 81 (1986)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    M. Znojil, J. Math. Phys. 31, (1990)Google Scholar
  28. 28.
    A.A. Rajabi, Indian J. Pure Appl. Phys. l41, 89 (2003)Google Scholar
  29. 29.
    A.A. Rajabi, N. Salehi, Iranian J. Phys. Res. 8, 169 (2008)Google Scholar
  30. 30.
    H. Hassanabadi, A.A. Rajabi, Mod. Phys. Lett. A 24, 1043 (2009)CrossRefADSMATHGoogle Scholar
  31. 31.
    F.J. Squires, Nuovo Cimento 25, 242 (1962)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    A. Martin, Phys. Lett. 1, 72 (1962)MathSciNetCrossRefADSMATHGoogle Scholar
  33. 33.
    R. Bijker, M.M. Giannini, E. Santopinto, Eur. Phys. J. A 22, 319 (2004)CrossRefADSGoogle Scholar
  34. 34.
    Particle Data Group, J. Phys. G 37, 075021 (2010)CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nasrin Salehi
    • 1
  • Hassan Hassanabadi
    • 1
  • Ali Akbar Rajabi
    • 2
  1. 1.Department of Basic SciencesIslamic Azad UniversityShahroodIran
  2. 2.Physics DepartmentShahrood University of TechnologyShahroodIran

Personalised recommendations