On gravitational waves generated during inflation under the influence of a dynamical cosmological “constant”

  • L. M. Reyes
  • Claudia Moreno
  • José Edgar Madriz Aguilar
Regular Article

Abstract

We study cosmological gravitational waves generated during inflation under the influence of a decaying cosmological “constant”, in the Transverse-Traceless (TT) gauge. In our approach we consider a non-perturbative contribution of the dynamical cosmological “constant” to the tensor modes. As an application of the model we study the well-known cases \( \Lambda(t)=\sigma H^2\) and \( \Lambda(t)=\vartheta H\) . The spectrum of gravitational waves for the first case results scale invariant at the end of inflation, whereas for the second case scale invariance is not achieved, leaving this to new proposals of the form: \( \Lambda(t)=f(H,H^{2})\) , in order to include inflation in some \( \Lambda(t)CDM\) models. We also found that the non-perturbative contributions of \( \Lambda\)(t) , accelerate the decreasing of the amplitude of gravitational waves during a power law inflationary stage, by an exponential factor.

Keywords

Cosmological Constant Gravitational Wave Hubble Parameter Vacuum Energy Density Tensor Mode 

References

  1. 1.
    A. Starobinsky, JETP Lett. 30, 682 (1979)ADSGoogle Scholar
  2. 2.
    E. Stewart, D. Lyth, Phys. Lett. B 302, 171 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    M. Kamionkowski, A. Kosowsky, A. Stebbins, Phys. Rev. D 55, 7368 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    M. Kamionkowski, A. Kosowski, A. Stebbins, Phys. Rev. Lett. 78, 2058 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    L. Knox, Y. Song, Phys. Rev. Lett. 89, 011303 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    B. Allen, Phys. Rev. D 37, 2078 (1988)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J. Bardeen, Phys. Rev. D 22, 1882 (1980)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    G.F.R. Ellis, M. Bruni, Phys. Rev. D 40, 1804 (1989)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    A.G. Riess et al., Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    S. Perlmutter et al., Nature 391, 51 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Eric V. Linder, Gen. Relativ. Gravit. 40, 329 (2008)MathSciNetADSCrossRefMATHGoogle Scholar
  12. 12.
    J.S. Alcaniz, Braz. J. Phys. 36, 1109 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M. Ozer, M.O. Taha, Phys. Lett. B 171, 363 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    M. Ozer, M.O. Taha, Nucl. Phys. B 287, 776 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    O. Bertolami, Nuovo Cimento B 93, 36 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    Ya.B. Zel'dovich, Zh. Eksp. Teor. Fiz. Pis'ma Red 6, 883 (1967) (JETP Lett. 6ADSGoogle Scholar
  17. 17.
    Ya.B. Zel'dovich, Sov. Phys. Uspekhi 11, 381 (1968)ADSCrossRefGoogle Scholar
  18. 18.
    J.S. Alcaniz, H.A. Borges, S. Carneiro, J.C. Fabris, C. Pigozzo, W. Zimdahl, Phys. Lett. B 716, 165 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    R. Schitzhold, Phys. Rev. Lett. 89, 081302 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    F.R. Klinkhamer, G.E. Volovik, Phys. Rev. D 79, 063527 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    F.R. Urban, A.R. Zhitnitsky, Phys. Rev. D 80, 063001 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    F.R. Urban, A.R. Zhitnitsky, Phys. Lett. B 688, 9 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    F.R. Urban, A.R. Zhitnitsky, Nucl. Phys. B 835, 135 (2010)ADSCrossRefMATHGoogle Scholar
  24. 24.
    N. Ohta, Phys. Lett. B 695, 41 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    S. Banerjee et al., Phys. Lett. B 611, 27 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    C. Pigozzo, M.A. Dantas, S. Carneiro, J.S. Alcaniz, JCAP 08, 022 (2011) arXiv:astro-ph/1007.5290ADSCrossRefGoogle Scholar
  27. 27.
    R. Schützhold, Phys. Rev. Lett. 89, 081302 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    R. Schützhold, Int. J. Mod. Phys. A 17, 4359 (2002)ADSCrossRefMATHGoogle Scholar
  29. 29.
    H.A. Borges, S. Carneiro, Gen. Relativ. Gravit. 37, 1385 (2005) arXiv:gr-qc/0503037 MathSciNetADSCrossRefMATHGoogle Scholar
  30. 30.
    E. Komatsu, K.M. Smith et al., Astrophys. J. Suppl. 192, 18 (2011) arXiv:astro-ph/1001.4538ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. M. Reyes
    • 1
  • Claudia Moreno
    • 1
  • José Edgar Madriz Aguilar
    • 1
  1. 1.Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI)Universidad de GuadalajaraGuadalajara, JaliscoMéxico

Personalised recommendations