Cryogenic bolometer crystals for rare event searches

  • L. Gironi
Regular Article


Bolometers are suitable detectors for fundamental physics experiments, like neutrinoless Double Beta Decay, because of their very good intrinsic characteristics (high detection efficiency, excellent energy resolution, ...). The bolometric technique has already obtained excellent results on the neutrino mass study with Cuoricino, the ancestor of CUORE, an array of 19 towers with 52 crystals each, which will achieve a sensitivity below 100meV. Cuoricino has also shown that the surface contaminations of materials facing the detectors would be the limiting factor for the sensitivity of next-generation experiments with bolometers. Mainly for this reason scintillating bolometers have been developed allowing a very efficient discrimination of alpha particles thanks to their double readout. Excellent results were obtained with different compounds such as CdWO4 , ZnSe and ZnMoO4. Tests performed on these crystals showed the possibility to discriminate the interacting particles through a pulse shape analysis. This feature is very interesting because it allows to obtain the same (or even better) discrimination power achieved with the double readout but with a much easier and cheaper assembly. Finally, the sensitivity that could be achieved with a large mass array of scintillating bolometers is analyzed on the basis of the results obtained on background and energy resolution.


ZnSe Energy Resolution Neutrino Mass Discrimination Power Nuclear Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Kraus et al., Radiat. Meas. 42, 921 (2007).CrossRefGoogle Scholar
  2. 2.
    J.W. Beeman et al., Phys. Rev. Lett. 108, 062501 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    A. Strumia, F. Vissani, hep-ph/0606054.Google Scholar
  4. 4.
    M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935).ADSCrossRefMATHGoogle Scholar
  5. 5.
    W. Furry, Phys. Rev. 56, 1184 (1939).ADSCrossRefMATHGoogle Scholar
  6. 6.
    F. Simkovic et al., Phys. Rev. C 77, 045503 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    O. Civitarese et al., J. Phys. Conf. Ser. 173, 012012 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    J. Menendez et al., Nucl. Phys. A 818, 139 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    J. Barea, F. Iachello, Phys. Rev. C 79, 044301 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962).ADSCrossRefMATHGoogle Scholar
  11. 11.
    M. Redshaw et al., Phys. Rev. Lett. 102, 212502 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    C. Arnaboldi et al., Phys. Rev. C 78, 035502 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    E. Andreotti et al., Astropart. Phys. 34, 822 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    C. Arnaboldi et al., Nucl. Instrum. Methods A 518, 775 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    C. Arnaboldi et al., J. Cryst. Growth 312, 2999 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    F. Alessandria, submitted to Astropart. Phys., arXiv:1109.0494.
  17. 17.
    L. Gironi, J. Low Temp. Phys. 167, 504 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    J.B. Birks, Proc. Phys. Soc. A 64, 874 (1951).ADSCrossRefGoogle Scholar
  19. 19.
    H. Kraus et al., Nucl. Phys. B Proc. Suppl. 173, 168 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    C. Arnaboldi et al., Astropart. Phys. 34, 143 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    V.I. Tretyak, Astropart. Phys. 33, 40 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    C. Arnaboldi et al., Astropart. Phys. 34, 344 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    V.V. Alenkov et al., Cryst. Res. Technol. 46, 1223 (2011).CrossRefGoogle Scholar
  25. 25.
    L. Gironi et al., JINST 5, P11007 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    J.W. Beeman et al., Astropart. Phys. 35, 813 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    NEMO3 Collaboration (F. Mauger), J. Phys. Conf. Ser. 203, 012065 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).ADSCrossRefGoogle Scholar
  29. 29.
    L. Gironi et al., Opt. Mater. , 1388 (2009).Google Scholar
  30. 30.
    C. Bucci et al., Eur. Phys. J. A 41, 155 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer 2012

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Milano BicoccaMilano BicoccaItaly
  2. 2.INFNMilano BicoccaItaly

Personalised recommendations