Skip to main content
Log in

Cryogenic bolometer crystals for rare event searches

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Bolometers are suitable detectors for fundamental physics experiments, like neutrinoless Double Beta Decay, because of their very good intrinsic characteristics (high detection efficiency, excellent energy resolution, ...). The bolometric technique has already obtained excellent results on the neutrino mass study with Cuoricino, the ancestor of CUORE, an array of 19 towers with 52 crystals each, which will achieve a sensitivity below 100meV. Cuoricino has also shown that the surface contaminations of materials facing the detectors would be the limiting factor for the sensitivity of next-generation experiments with bolometers. Mainly for this reason scintillating bolometers have been developed allowing a very efficient discrimination of alpha particles thanks to their double readout. Excellent results were obtained with different compounds such as CdWO4 , ZnSe and ZnMoO4. Tests performed on these crystals showed the possibility to discriminate the interacting particles through a pulse shape analysis. This feature is very interesting because it allows to obtain the same (or even better) discrimination power achieved with the double readout but with a much easier and cheaper assembly. Finally, the sensitivity that could be achieved with a large mass array of scintillating bolometers is analyzed on the basis of the results obtained on background and energy resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kraus et al., Radiat. Meas. 42, 921 (2007).

    Article  Google Scholar 

  2. J.W. Beeman et al., Phys. Rev. Lett. 108, 062501 (2012).

    Article  ADS  Google Scholar 

  3. A. Strumia, F. Vissani, hep-ph/0606054.

  4. M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935).

    Article  ADS  MATH  Google Scholar 

  5. W. Furry, Phys. Rev. 56, 1184 (1939).

    Article  ADS  MATH  Google Scholar 

  6. F. Simkovic et al., Phys. Rev. C 77, 045503 (2008).

    Article  ADS  Google Scholar 

  7. O. Civitarese et al., J. Phys. Conf. Ser. 173, 012012 (2009).

    Article  ADS  Google Scholar 

  8. J. Menendez et al., Nucl. Phys. A 818, 139 (2009).

    Article  ADS  Google Scholar 

  9. J. Barea, F. Iachello, Phys. Rev. C 79, 044301 (2009).

    Article  ADS  Google Scholar 

  10. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

    Article  ADS  MATH  Google Scholar 

  11. M. Redshaw et al., Phys. Rev. Lett. 102, 212502 (2009).

    Article  ADS  Google Scholar 

  12. C. Arnaboldi et al., Phys. Rev. C 78, 035502 (2008).

    Article  ADS  Google Scholar 

  13. E. Andreotti et al., Astropart. Phys. 34, 822 (2011).

    Article  ADS  Google Scholar 

  14. C. Arnaboldi et al., Nucl. Instrum. Methods A 518, 775 (2004).

    Article  ADS  Google Scholar 

  15. C. Arnaboldi et al., J. Cryst. Growth 312, 2999 (2010).

    Article  ADS  Google Scholar 

  16. F. Alessandria, submitted to Astropart. Phys., arXiv:1109.0494.

  17. L. Gironi, J. Low Temp. Phys. 167, 504 (2012).

    Article  ADS  Google Scholar 

  18. J.B. Birks, Proc. Phys. Soc. A 64, 874 (1951).

    Article  ADS  Google Scholar 

  19. H. Kraus et al., Nucl. Phys. B Proc. Suppl. 173, 168 (2007).

    Article  ADS  Google Scholar 

  20. C. Arnaboldi et al., Astropart. Phys. 34, 143 (2010).

    Article  ADS  Google Scholar 

  21. V.I. Tretyak, Astropart. Phys. 33, 40 (2010).

    Article  ADS  Google Scholar 

  22. C. Arnaboldi et al., Astropart. Phys. 34, 344 (2011).

    Article  ADS  Google Scholar 

  23. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  24. V.V. Alenkov et al., Cryst. Res. Technol. 46, 1223 (2011).

    Article  Google Scholar 

  25. L. Gironi et al., JINST 5, P11007 (2010).

    Article  ADS  Google Scholar 

  26. J.W. Beeman et al., Astropart. Phys. 35, 813 (2012).

    Article  ADS  Google Scholar 

  27. NEMO3 Collaboration (F. Mauger), J. Phys. Conf. Ser. 203, 012065 (2010).

    Article  ADS  Google Scholar 

  28. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).

    Article  ADS  Google Scholar 

  29. L. Gironi et al., Opt. Mater. , 1388 (2009).

  30. C. Bucci et al., Eur. Phys. J. A 41, 155 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gironi.

Additional information

This paper is based on the author’s PhD thesis, that was awarded the INFN “Bruno Rossi” Prize in 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gironi, L. Cryogenic bolometer crystals for rare event searches . Eur. Phys. J. Plus 127, 84 (2012). https://doi.org/10.1140/epjp/i2012-12084-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12084-0

Keywords

Navigation