A suite of user-friendly global climate models: Hysteresis experiments

Regular Article
Part of the following topical collections:
  1. Focus Point on Earth’s Climate as a Problem in Physics


A hierarchy of global spectral circulation models is introduced ranging from the shallow-water system via the primitive-equation dynamical core of the atmosphere to the Planet Simulator as a Global Climate Model (GCM) of Intermediate Complexity (MIC) which can be used to run climate and paleo-climate simulations for time scales up to ten thousand years or more in an acceptable real time. The priorities in development are set to speed, easy handling and portability with a modular structure suitable for problem-dependent configuration. Adaptions exist for the planetary atmospheres of Mars and of Saturn’s moon Titan and are being extended. Common coupling interfaces enable the addition of ocean, ice, vegetation models and more. An interactive mode with a Model Starter and a Graphical User Interface (GUI) is available to select a configuration from the available model suite, to set its parameters and inspect atmospheric fields while changing the models’ parameters on the fly. This is especially useful for teaching, debugging and tuning of parameterizations. An updated overview of the model suite’s features is presented based on the Earth-like climate model Planet Simulator with mixed-layer ocean introducing static and memory hysteresis in terms of a parameter sweep of the solar constant and CO2 concentrations. The static hysteresis experiment demonstrates that the solar constant varying by 20% reveals warm and snowball Earth climate regimes depending on the history of the system. This hysteresis subjected to a thermodynamic analysis shows the following features: i) Both climate regimes are characterized by global mean surface temperature and entropy growing with increasing solar constant. ii) The climate system’s efficiency decreases (increases) with increasing solar constant in present-day warm (snowball) climate conditions. iii) Climate transitions near bifurcation points are characterized by high efficiency associated with the system’s large distance from the stable regime. Memory hysteresis evolves when changing the direct atmospheric radiative forcing which, associated with a well-mixed CO2 concentration, modifies the planetary thermodynamic state, and hence the surface temperature. The hysteresis effected by different CO2 change rates is analysed: i) The response is due to infrared cooling (for constant temperature lapse-rate) which, in turn, is related to the surface temperature through the Stefan-Boltzmann law in a ratio proportional to the new infrared opacity. Subsequent indirect effects, that are water-vapour-greenhouse and ice-albedo feedbacks, enhance the response. ii) Different rates of CO2 variation may lead to similar transient climates characterized by the same global mean surface temperature but different values of CO2 concentration. iii) Far from the bifurcation points, the model’s climate depends on the history of the radiative forcing thus displaying a hysteresis cycle that is neither static nor dynamical, but is related to the memory response of the model determined by the mixed-layer depth of the ocean. Results are supported by a zero-dimensional energy balance model.


Entropy Production Global Climate Model Solar Constant Hysteresis Cycle Hysteresis Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Pedlowsky, Geophysical Fluid Dynamics (Springer Verlag, Heidelberg, 1987).Google Scholar
  2. 2.
    J.P. Peixoto, A.H. Oort, Physics of Climate (Springer, New York, 1992).Google Scholar
  3. 3.
    B. Saltzman, Dynamical Paleoclimatology: Generalized Theory of Global Climate Change (Academic Press, 2002).Google Scholar
  4. 4.
    K. Fraedrich, E. Kirk, U. Luksch, F. Lunkeit, Meteorol. Z. 14, 735 (2005).CrossRefGoogle Scholar
  5. 5.
    K. Fraedrich, H. Jansen, E. Kirk, U. Luksch, F. Lunkeit, Meteorol. Z. 14, 299 (2005).CrossRefGoogle Scholar
  6. 6.
    K. Fraedrich, H. Jansen, E. Kirk, F. Lunkeit, Meteorol. Z. 14, 305 (2005).CrossRefGoogle Scholar
  7. 7.
    B.J. Hoskins, A.J. Simmons, Quart. J. Roy. Meteor. Soc. 101, 637 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    S.A. Orszag, J. Atmos. Sci. 27, 890 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    R. Asselin, Mon. Weather Rev. 100, 487 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    S. Espa, I. Bordi, T. Frisius, K. Fraedrich, A. Sutera, Geophys. Astrophys. Fluid Dyn., doi 10.1080/03091929.2011.637301 (2012).Google Scholar
  11. 11.
    T. Frisius, K. Fraedrich, W. Wang, X. Zhu, Ocean Modelling 30, 310 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    I.N. James, L.J. Gray, Quart. J. R. Meteorol. Soc. 112, 1231 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    E. Roeckner, K. Arpe, L. Bengtsson, S. Brinkop, L. Duemenil, M. Esch, E. Kirk, F. Lunkeit, M. Ponater, B. Rockel, R. Sausen, U. Schlese, S. Schubert, M. Windelband, Max-Planck-Institut für Meteorologie, Report 93 (1992).Google Scholar
  14. 14.
    L. Laursen, E. Eliasen, Tellus 41, 385 (1989).Google Scholar
  15. 15.
    A.A. Lacis, J.E. Hansen, J. Atmos. Sci. 31, 118 (1974).ADSCrossRefGoogle Scholar
  16. 16.
    A.E.S. Green, Appl. Opt. 3, 203 (1964).ADSCrossRefGoogle Scholar
  17. 17.
    G.L. Stephens, Mon. Weather Rev. 112, 826 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    T. Sasamori, J. Appl. Meteror. 7, 721 (1968).ADSCrossRefGoogle Scholar
  19. 19.
    G.L. Stephens, S. Ackermann, E.A. Smith, J. Atmos. Sci. 41, 687 (1984).ADSCrossRefGoogle Scholar
  20. 20.
    H.L. Kuo, J. Atmos. Sci. 31, 1232 (1974).ADSCrossRefGoogle Scholar
  21. 21.
    A. Slingo, J.M. Slingo, J. Geophys. Res. 96, 341 (1991).CrossRefGoogle Scholar
  22. 22.
    R. Sausen, S. Schubert, L. Duemenil, J. Hydrol. 155, 337 (1994).CrossRefADSGoogle Scholar
  23. 23.
    E. Dahms, H. Borth, F. Lunkeit, K. Fraedrich, J. Meteorol. Soc. Jpn 89, 399 (2011).CrossRefGoogle Scholar
  24. 24.
    K. Fraedrich, F. Lunkeit, Tellus A 60, 921 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    E. Dahms, F. Lunkeit, K. Fraedrich, J. Clim. (2012) unpublished.Google Scholar
  26. 26.
    A. Schmittner, T.A.M. Silva, K. Fraedrich, E. Kirk, F. Lunkeit, J. Clim. 24, 2814 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    K. Hasselmann, Prog. Oceanogr. 11, 69 (1982).ADSCrossRefGoogle Scholar
  28. 28.
    E. Maier-Reimer, U. Mikolajewicz, K. Hasselmann, J. Phys. Oceanogr. 23, 731 (1993).ADSCrossRefGoogle Scholar
  29. 29.
    D.E. Farrow, D.P. Stevens, J. Phys. Oceanogr. 25, 1731 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    B.P. Leonard, Comput. Methods Appl. Mech. Eng. 19, 59 (1979) DOI:10.1016/0045-7825(79)90034-3.ADSCrossRefMATHGoogle Scholar
  31. 31.
    A. Arakawa, V.R. Lamb, in Methods in Computational Physics, Vol. 17 (Academic Press, 1977).Google Scholar
  32. 32.
    M. Wenzel, J. Schröter, J. Phys. Oceanogr. 37, 203 (2007) DOI:10.1175/JPO3007.1.ADSCrossRefGoogle Scholar
  33. 33.
    A.J. Semtner, jr., J. Phys. Oceanogr. 6, 379 (1976).ADSCrossRefGoogle Scholar
  34. 34.
    E. Kirk, K. Fraedrich, F. Lunkeit, C. Ulmen, CSPR report, 45 (Linköping Universitet, 2009).Google Scholar
  35. 35.
    V. Lucarini, K. Fraedrich, F. Lunkeit, Atmos. Chem. Phys. 10, 9729 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    M.I. Freidlin, I.D. Mayergozy, Physica B 306, 15 (2001).ADSCrossRefGoogle Scholar
  37. 37.
    G.H. Goldsztein, F. Broner, S.H. Strogatz, SIAM. J. Appl. Math. 57, 1163 (1997).MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    I. Bordi, K. Fraedrich, A. Sutera, X. Zhu, to be published in Theor. Appl. Climatol. (2012).Google Scholar
  39. 39.
    A. Kleidon, K. Fraedrich, T. Kunz, F. Lunkeit, Geophys. Res. Lett. 30, 2223 (2003).ADSCrossRefGoogle Scholar
  40. 40.
    T. Kunz, K. Fraedrich, E. Kirk, Clim. Dyn. 30, 2 (2008).CrossRefGoogle Scholar
  41. 41.
    V. Lucarini, K. Fraedrich, F. Lunkeit, Q. J. R. Meterol. Soc. 136, 2438 (2010).CrossRefGoogle Scholar
  42. 42.
    V. Lucarini, K. Fraedrich, F. Ragone, J. Atmos. Sci. 68, 659 (2011).CrossRefGoogle Scholar
  43. 43.
    D.R. Johnson, International Geophysics Series, Vol. 70 (Academic Press, New York, 2000).Google Scholar
  44. 44.
    R. Boschi, V. Lucarini, S. Pascale, in Beyond the Second Law, edited by R. Dewar (Springer Verlag, 2012).Google Scholar
  45. 45.
    C.J. Poulsen, R.L. Jacob, Paleoceanography 19, PA4021 (2004) DOI:10.1029/2004PA001056.ADSCrossRefGoogle Scholar
  46. 46.
    A. Voigt, J. Marotzke, Clim. Dyn. 35, 887 (2009).CrossRefGoogle Scholar
  47. 47.
    R.T. Wetherald, S. Manabe, J. Atmos. Sci. 32, 2044 (1975).ADSCrossRefGoogle Scholar
  48. 48.
    K. Fraedrich, Q. J. R. Meteorol. Soc. 105, 147 (1979).ADSCrossRefGoogle Scholar
  49. 49.
    G. Myhre, E.J. Highwood, K.P. Shine, Geophys. Res. Lett. 25, 2715 (1998).ADSCrossRefGoogle Scholar
  50. 50.
    I.M. Held, M. Winton, K. Takahashi, T. Delworth, F. Zeng, G.K. Vallis, J. Clim. 23, 2418 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    X. Zhu, K. Fraedrich, R. Blender, Geophys. Res. Lett. 33, L21604 (2006).ADSCrossRefGoogle Scholar
  52. 52.
    X. Zhu, K. Fraedrich, Z. Liu, R. Blender, J. Clim. 23, 5021 (2010).ADSCrossRefGoogle Scholar
  53. 53.
    J. Segschneider, B. Grieger, H.U. Keller, F. Lunkeit, E. Kirk, K. Fraedrich, A. Rhodin, R. Greve, Planetary and Space Sci. 53, 659 (2005).ADSCrossRefGoogle Scholar
  54. 54.
    S. Bathiany, M. Claussen, K. Fraedrich, Clim. Dyn. 38, 1775 (2012).CrossRefGoogle Scholar
  55. 55.
    J. Liakka, Tellus 64, 11088 (2012).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer 2012

Authors and Affiliations

  1. 1.KlimaCampusHamburgGermany

Personalised recommendations