Advertisement

A note on superluminal neutrinos

Regular Article

Abstract

Although characterized by a possible experimental error, the first results of the Opera experiment at CERN have opened up a hot discussion on the possibility of superluminal neutrinos already observed in some space events. In particular, Cohen and Glashow (CG) have considered it simply an error justifying their position on the basis of the bremsstrahlung of electron-positron pairs. In this paper, we would like to discuss this position also in view of the recent derivation of the superluminal limit as a consequence of the classical causality principle. Even if the final answer is related only to the review of all the experimental results, we believe that neutral particles (neutrinos, photons, etc.) might exhibit superluminal behavior also in view of the fact that the analysis performed by Cohen and Glashow does not contain any absolute limit, like that present in the case of the Cherenkov effect in vacuum, which is absolutely impossible, as its violation would require an infinite energy amount. CG conclusions are not in contrast with superluminal neutrinos, which, in turn, are fully compatible with the theoretical analysis reported as well.

Keywords

Photonic Crystal Electrical Dipole Neutral Particle Neutrino Energy Cherenkov Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.G. Cohen, S.L. Gordon, http://arxiv.org/pdf/1109.6562v1
  2. 2.
    T. Adam, Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [hep-ex]
  3. 3.
    A. Cutolo, Eur. Phys. J. Plus 127, 3 (2012)CrossRefGoogle Scholar
  4. 4.
    P. Adamson et al., Phys. Rev. D 76, 072005 (2007) arXiv:0706.0437 [hep-ex]ADSCrossRefGoogle Scholar
  5. 5.
    K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    R. Bionta, G. Blewitt, C. Bratton, A. Ciocio et al., Phys. Rev. Lett. 58, 1494 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Longo, Phys. Rev. D 36, 3276 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    S.R. Coleman, S.L. Glashow, Phys. Rev. D 59, 116008 (1999) arXiv:hep-ph/9812418 ADSCrossRefGoogle Scholar
  9. 9.
    S.R. Coleman, S.L. Glashow, Phys. Lett. B 405, 249 (1997) arXiv:hep-ph/9703240 ADSCrossRefGoogle Scholar
  10. 10.
    Y. Ashie, Phys. Rev. D 71, 112005 (2005) arXiv:hep-ex/0501064 ADSCrossRefGoogle Scholar
  11. 11.
    S. Desai et al., Astropart. Phys. 29, 42 (2008) arXiv:0711.0053 ADSCrossRefGoogle Scholar
  12. 12.
    M.E. Swanson et al., Astrophys. J. 652, 206 (2006) arXiv:astro-ph/0606126 ADSCrossRefGoogle Scholar
  13. 13.
    R. Abbasi, First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector, arXiv:1101.169Google Scholar
  14. 14.
    A. Einstein, Ann. Phys. 17, 891 (1905)CrossRefMATHGoogle Scholar
  15. 15.
    A. Cutolo, Int. J. Appl. Phys. 8, 5 (2012)Google Scholar
  16. 16.
    G. Wald, General relativity (University of Chicago Press, Chicago, 1995)Google Scholar
  17. 17.
    J.D. Jackson, Classical Electrodynamics (John Wiley and Sons, NY, 1962)Google Scholar
  18. 18.
    H.C. Ohanian, Classical Electrodynamics, 2nd edition (Infinity Science Press, Hingham, 1977)Google Scholar
  19. 19.
    P.A. Cherenkov, Phys. Rev. 52, 378 (1937)ADSCrossRefGoogle Scholar
  20. 20.
    J.M. Frank, I.E. Tamm, C. R. Acad. Sci., URSS 14, 109 (1937)MATHGoogle Scholar
  21. 21.
    T. Shiozawa, Classical Relativistic Electrodynamics (Springer, Berlin, 2006)Google Scholar
  22. 22.
    H. Wiedeman, Syncthrotron radiation (Springer Verlag, Berlin, 2007)Google Scholar
  23. 23.
    A. Kesar, M. Hesse, S. Korbly, Phys. Rev. E 71, 016501 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    C.A. Balanis, Advanced Electromagnetics (J. Wiley and Sons, NY, 1989)Google Scholar
  25. 25.
    S.J. Smith, E.M. Purcell, Phys. Rev. 92, 1069 (1953)ADSCrossRefGoogle Scholar
  26. 26.
    P.W. Miloni, Fast light, slow light and left handed light (Taylor and Francis, NY, 2005)Google Scholar
  27. 27.
    P.N. Prasad, Nanophotonics (J. Wiley and Sons, N.Y., 2006)Google Scholar
  28. 28.
    J. Toll, Phys. Rev. 104, 1760 (1956)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    H.M. Nussenzveig, Causality and dispersion relations, 2nd edition (J. Wiley and Sons, NY, 1972)Google Scholar
  30. 30.
    M. Born, E. Wolf, Principles of Optics, VII edition (Cambridge University Press, Cambridge, 1999)Google Scholar
  31. 31.
    J. Evans, P. Alsing, Am. J. Phys. 69, 2103 (2001)CrossRefGoogle Scholar
  32. 32.
    U. Leonardt, P. Piwinicki, Phys. Rev. A 60, 4301 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    A. Andreone, A. Cusano, A. Cutolo, V. Galdi, Selected topics in photonic crystals and metamaterials (World Scientific, Singapore, 2011)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer 2012

Authors and Affiliations

  1. 1.Dipartimento di IngegneriaUniversità di Benevento, Corso GaribaldiBeneventoItaly

Personalised recommendations