Splitting of degenerate states in one-dimensional quantum mechanics

  • Avik Dutt
  • Trisha Nath
  • Sayan Kar
  • Rajesh Parwani
Regular Article


A classic “no-go” theorem in one-dimensional quantum mechanics can be evaded when the potentials are unbounded below, thus allowing for novel parity-paired degenerate energy bound states. We numerically determine the spectrum of one such potential and study the parametric variation of the transition wavelength between a bound state lying inside the valley of the potential and another, von Neumann-Wigner-like state, appearing above the potential maximum. We then construct a modified potential which is bounded below except when a parameter is tuned to vanish. We show how the spacing between certain energy levels gradually decreases as we tune the parameter to approach the value for which unboundedness arises, thus quantitatively linking the closeness of degeneracy to the steepness of the potential. Our results are generic to a large class of such potentials. Apart from their conceptual interest, such potentials might be realisable in mesoscopic systems thus allowing for the experimental study of the novel states. The numerical spectrum in this study is determined using the asymptotic iteration method which we briefly review.


Energy Eigenvalue Degenerate State Transition Wavelength Length Scale Parameter Bounded Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. von Neumann, E. Wigner, Phys. Z. 30, 465 (1929)Google Scholar
  2. 2.
    F.H. Stillinger, D.R. Herrick, Phys. Rev. A 11, 446 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    F. Capasso, C. Sirtori, J. Faist, D.L. Sivco, S.N.G. Chu, A.Y. Cho, Nature 358, 565 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    S. Kar, R. Parwani, EPL 80, 30004 (2007)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    R. Koley, S. Kar, Phys. Lett. A 363, 369 (2007)MathSciNetADSCrossRefMATHGoogle Scholar
  6. 6.
    L. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamom Press, Oxford, 1977) p. 60Google Scholar
  7. 7.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)MathSciNetADSCrossRefMATHGoogle Scholar
  8. 8.
    H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003)MathSciNetADSCrossRefMATHGoogle Scholar
  9. 9.
    F.M. Fernandez, J. Phys. A: Math. Gen. 37, 6173 (2004)ADSCrossRefMATHGoogle Scholar
  10. 10.
    H.-T. Cho, A.S. Cornell, J. Doukas, W. Naylor, Phys. Rev. D 80, 064022 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    H.-T. Cho, A.S. Cornell, J. Doukas, W. Naylor, Class. Quantum Grav. 27, 155004 (2010)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    R.L. Hall, N. Saad, K.D. Sen, J. Phys. A: Math. Theor. 44, 185307 (2011)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    A.J. Sous, M.I. El-Kawni, Int. J. Mod. Phys. A 24, 4169 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  14. 14.
    H.-T. Cho, C.-L. Ho, J. Phys. A: Math. Theor. 41, 172002 (2008)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    F. Capasso, J. Faist, C. Sirtori, J. Math. Phys. 37, 4775 (1996)ADSCrossRefMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer 2012

Authors and Affiliations

  • Avik Dutt
    • 1
  • Trisha Nath
    • 2
  • Sayan Kar
    • 3
  • Rajesh Parwani
    • 4
  1. 1.Department of Electronics and Electrical Communication EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Physics & MeteorologyIndian Institute of TechnologyKharagpurIndia
  3. 3.Department of Physics & Meteorology and Centre for Theoretical StudiesIndian Institute of TechnologyKharagpurIndia
  4. 4.Department of Physics and University Scholars ProgrammeNational University of SingaporeKent RidgeSingapore

Personalised recommendations